China factory Traverse Head Rolling Ring Traverse Drive Box, Gp15A Traverse Rolling Ring Drives

Product Description

Product Description

Traverse head rolling ring traverse drive box, GP15A traverse rolling ring drives 
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force

Type  GP15A
Shaft Diameter 15 mm
Number of Rolling Rings 3 Pieces
Maximum Thrust(N) 100 N
Weight-Bearing(KG) 10 kg
Maximum Pitch(mm) 11 mm
Weight(KG) 1.2 kg

 

Product Parameters

Detailed Photos

 

ROTATION DIRECTION (CAN CHANGE)

 

Packaging & Shipping

Package Material

 

Wooden Box or Carton

Package Detail

 

1piece or 5 pieces per carton package or wooden carton

Delivery Way

 

Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement

 

Product Application

Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
 

Different Type of Product

Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.

B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts. 

C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts. 

FAQ

 

Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.

Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q3. What is your terms of delivery?

A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.

Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery

Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Color: Fixed
Customized: Customized
Standard: National
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pitch drive

How do pitch drives contribute to the adaptability and versatility of adjustable systems in various settings?

Pitch drives play a crucial role in enhancing the adaptability and versatility of adjustable systems across various settings. These drives enable precise control over the pitch angles of adjustable components, allowing them to respond dynamically to changing operating conditions. Here’s a detailed explanation of how pitch drives contribute to the adaptability and versatility of adjustable systems:

  • Optimized Performance: By adjusting the pitch angles of blades, propellers, or other adjustable components, pitch drives optimize the performance of adjustable systems. In applications such as wind turbines or marine propulsion systems, pitch drives enable the system to capture maximum energy from the wind or water currents. By adjusting the pitch angles based on real-time conditions, such as wind speed or load demand, pitch drives ensure that the system operates at its peak performance, maximizing energy conversion, and overall efficiency.
  • Load Control and Mitigation: Pitch drives provide load control capabilities, allowing adjustable systems to manage and mitigate excessive loads. By adjusting the pitch angles, the systems can redistribute the loads on components, reducing stress concentrations and minimizing the risk of fatigue or failure. This load control capability is particularly valuable in applications where adjustable systems operate under varying and unpredictable load conditions, such as wind turbines experiencing gusty winds or marine systems encountering wave-induced loads.
  • Dynamic Response: The ability of pitch drives to adjust pitch angles in real-time enables adjustable systems to have a dynamic response to changing operating conditions. For example, in wind turbines, pitch drives can respond to sudden changes in wind speed or direction, allowing the blades to maintain optimal aerodynamic performance and prevent excessive loads. This dynamic response capability enhances the adaptability of adjustable systems, enabling them to quickly adjust and optimize their operation in response to environmental changes.
  • Power Regulation: Pitch drives contribute to the adaptability of adjustable systems by enabling power regulation. By adjusting the pitch angles, the systems can control the power output or torque generation. This is particularly useful in applications such as wind turbines, where pitch drives can regulate the rotational speed of the blades to match the desired power output or grid requirements. This power regulation capability enhances the versatility of adjustable systems by allowing them to operate efficiently across a wide range of power demands or grid conditions.
  • Operational Flexibility: Adjustable systems equipped with pitch drives offer operational flexibility in various settings. The ability to adjust pitch angles allows these systems to adapt to different operating conditions, load profiles, or environmental factors. For example, in wind turbines, pitch drives enable the system to operate optimally in both low and high wind speeds, maximizing energy capture across a wide range of wind conditions. This operational flexibility makes adjustable systems with pitch drives suitable for diverse applications and settings.
  • System Protection: Pitch drives contribute to the adaptability and versatility of adjustable systems by providing system protection features. In situations where excessive loads, extreme weather conditions, or potential hazards are detected, pitch drives can adjust the pitch angles to protect the system from damage or unsafe operating conditions. This proactive system protection capability enhances the adaptability and safety of adjustable systems, allowing them to operate reliably and withstand challenging conditions.

In summary, pitch drives significantly contribute to the adaptability and versatility of adjustable systems by optimizing performance, enabling load control and mitigation, providing dynamic response, regulating power, offering operational flexibility, and ensuring system protection. These capabilities make pitch drives essential components in various settings, ranging from renewable energy generation to marine propulsion, where the ability to adjust and optimize system parameters is critical for efficient and reliable operation.

pitch drive

How do pitch drives contribute to precise and controlled pitch adjustments in machinery?

Pitch drives play a crucial role in achieving precise and controlled pitch adjustments in machinery. They provide the necessary actuation and control mechanisms to alter the pitch angle of rotating components, such as blades or propellers, with accuracy and reliability. Here’s a detailed explanation of how pitch drives contribute to precise and controlled pitch adjustments:

Pitch drives utilize various mechanisms, such as hydraulic, pneumatic, electric, or mechanical systems, to generate the required force or torque for pitch angle adjustments. These mechanisms are controlled through integrated control systems or external control signals, allowing for precise and controlled manipulation of the pitch angle. Here are the key ways in which pitch drives contribute to precise and controlled pitch adjustments:

  • Accurate Positioning: Pitch drives offer the ability to accurately position the rotating components at the desired pitch angle. They allow for fine adjustments, enabling precise control over the orientation and alignment of the blades or propellers. This accuracy is essential in applications where optimal performance, efficiency, and aerodynamic characteristics are critical.
  • Dynamic Control: Pitch drives enable dynamic control over the pitch angle, allowing for real-time adjustments based on changing conditions or operational requirements. With fast response times and precise control algorithms, pitch drives can adapt to varying loads, wind speeds, or other external factors, ensuring that the pitch angle is continuously optimized for optimal performance and safety.
  • Load Distribution: In multi-blade systems, such as wind turbines or helicopter rotors, pitch drives contribute to precise and controlled pitch adjustments, resulting in optimized load distribution across the blades. By individually adjusting the pitch angle of each blade, pitch drives can distribute the load evenly, minimize aerodynamic imbalances, and enhance the overall efficiency and lifespan of the machinery.
  • Safety and Protection: Pitch drives provide a means for safety and protection in machinery. They enable the adjustment of pitch angles to regulate the rotational speed, prevent over-speeding, and mitigate the effects of excessive loads or adverse operating conditions. By allowing controlled pitch adjustments, pitch drives contribute to safe and reliable operation, protecting the machinery from potential damage or catastrophic failures.
  • Automation and Control Integration: Pitch drives can be integrated into automated control systems, allowing for seamless integration and coordination with other components or subsystems of the machinery. Through sensors, feedback loops, and control algorithms, pitch drives can be part of a closed-loop control system that continuously monitors and adjusts the pitch angle based on predefined parameters or operational objectives. This integration enhances the precision, responsiveness, and overall performance of pitch adjustments.
  • Flexibility and Adaptability: Different types of pitch drives offer varying degrees of flexibility and adaptability. Electric pitch drives, for example, can offer programmable control algorithms, allowing for customized pitch adjustment profiles or adaptive control strategies. This flexibility enables the pitch drives to adapt to specific operating conditions, load variations, or performance requirements, ensuring precise and controlled pitch adjustments in diverse machinery applications.

Overall, pitch drives provide the necessary actuation and control mechanisms to achieve precise and controlled pitch adjustments in machinery. Through accurate positioning, dynamic control, load distribution, safety features, automation, and adaptability, pitch drives contribute to optimized performance, efficiency, and reliability in various industrial sectors.

pitch drive

How does the design of a pitch drive contribute to efficient adjustment or movement?

The design of a pitch drive plays a crucial role in enabling efficient adjustment or movement of the pitch angle in machinery or systems. The design factors of a pitch drive are carefully considered to ensure precise control, reliability, and optimal performance. Here’s a detailed explanation of how the design of a pitch drive contributes to efficient adjustment or movement:

The design considerations of a pitch drive include the following aspects:

  • Mechanical Structure: The mechanical structure of a pitch drive is designed to provide the necessary strength, rigidity, and durability to withstand the operational forces and loads. It ensures that the pitch drive can effectively transmit and control the required torque and movement to adjust the pitch angle. The design considers factors such as material selection, component dimensions, and overall structural integrity to ensure efficient adjustment without compromising the system’s reliability.
  • Gearing System: Pitch drives often incorporate gearing systems to transmit and amplify the rotational motion. The design of the gearing system is crucial for efficient adjustment or movement. It ensures precise torque transmission, minimal backlash, and smooth operation. The gear ratio and gear quality are carefully chosen to achieve the desired pitch angle adjustment range and accuracy. The design of the gears also considers factors such as noise reduction, lubrication, and maintenance requirements.
  • Actuation Mechanism: The actuation mechanism of a pitch drive depends on the specific application and requirements. It can involve various technologies such as hydraulic, pneumatic, or electric actuators. The design of the actuation mechanism focuses on providing precise and responsive control over the pitch angle adjustment. Factors such as actuator speed, force or torque output, and control system integration are considered to ensure efficient adjustment or movement.
  • Control System Integration: The design of a pitch drive includes the integration of a control system that governs the pitch angle adjustment. The control system receives input signals or commands and translates them into appropriate actuation signals for the pitch drive mechanism. The design of the control system ensures accurate and responsive control, taking into account factors such as sensor feedback, signal processing, and control algorithms. Efficient control system design facilitates precise and dynamic adjustment of the pitch angle in real-time.

The design features and considerations of a pitch drive contribute to efficient adjustment or movement in several ways:

  • High Precision: The design ensures precise control over the pitch angle, allowing for fine adjustments and accurate positioning. This precision is crucial in applications where small changes in the pitch angle can significantly impact performance, efficiency, or safety.
  • Smooth Operation: The design minimizes friction, backlash, and mechanical vibrations, resulting in smooth and consistent movement during pitch angle adjustment. Smooth operation reduces wear and tear, enhances system reliability, and improves overall performance.
  • Speed and Responsiveness: The design factors in the actuation mechanism and control system to enable fast and responsive pitch angle adjustments. This is particularly important in applications where rapid changes in the pitch angle are required to adapt to dynamic operating conditions.
  • Reliability: The design ensures the pitch drive’s structural integrity, component durability, and system reliability. This contributes to long-term operation without significant maintenance or downtime, enhancing the efficiency and productivity of the machinery or system.
  • Safety: The design incorporates safety features and mechanisms to prevent unintended or excessive pitch angle adjustments. Safety considerations may include limit switches, emergency stop controls, or redundant systems to ensure safe operation and protect against potential hazards.

Overall, the design of a pitch drive is carefully engineered to provide efficient adjustment or movement of the pitch angle. By considering mechanical structure, gearing systems, actuation mechanisms, and control system integration, the design aims to achieve precise control, reliability, and optimal performance in machinery or systems that rely on pitch angle adjustment.

China factory Traverse Head Rolling Ring Traverse Drive Box, Gp15A Traverse Rolling Ring Drives  China factory Traverse Head Rolling Ring Traverse Drive Box, Gp15A Traverse Rolling Ring Drives
editor by CX 2024-03-29