Product Description
Features:
1. Modular design realizes variable combination.
2. Housing is made of cast iron, which improve its rigidity and anti-vibration.
3. Sun and planet gears are processed by cementite and hardening, gears are processed by grinding, which improve the efficiency and lifetime of gear units.
| Product description | |
| Installation types | 1. horizontal vertical, 2. torque-arm. |
| Input types: | coaxial input, helical gear input, bevel-helical gear input |
| Output types: | internal involutes spline, hollow shaft with shrink disk, external involutes spline, CZPT shaft with flat key. |
| Speed reducing ratio: | 25-4000 |
| Transmission stage: | 2 stage /3 stage |
Eastwell P series planetary gear box, compared with the like common gear physical box, features stable transmission, high loading capacity, small size and high drive ratio. Additionally, it has long service life which reaches 1000Y, small size, and beautiful appearance.
Characteristic advantage
1.Compact structure.
2.CZPT shaft or hollow shaft with shrink disc.
3.Progressive spline or flange shaft design.
4.High vibration resistance.
Specification parameter
Product type : parallel-axes and intersecting-axes planetary gear box.
Torque output : max torque output: 2.2 ~2,600 kNm.
Industrial Application
Power Plant Equipment
Metallurgical Industry
Metal Forming Machinery
Petrochemical Industry
Mining Machine
Hoisting Machinery
Construction Industry
Environmental Protection Industry
Cable Industry
Food Machinery
Certificates
Passed ” ISO 9001 International Quality System Certificate”,”Europe CE Certificate”, ” Swiss SGS Certificate”,”High-tech enterprise certificate of ZheJiang city”,”Excellent performance management enterprise of ZheJiang city”,etc.
FAQ
1. Q: Can you make as per custom drawing?
A: Yes, we offer customized service for customers.
2. Q: Are you a factory or trading company?
A. We are manufacturer in ZheJiang China.
3. Q: What’s your MOQ?
A: One piece.
4. Q: What’s your production time?
A: 7-15 working days after receiving payment.
5. Q: What’s your payment terms?
A: T/T, 30% payment in advance, 70% balance payment should be paid before shipping.
6. Q: What’s your package?
A: In wooden box packaging.
ZheJiang CZPT Gear Reducer Co.,Ltd., former a joint venture invested by is a ZheJiang CZPT GROUP and Well Company of America.We are professional manufacturer of the gear reducers and specialize in the gear reducers area in China for 20 years. CZPT has excellent R&D team,top-ranking production and test equipment.So we have the strong power in the developing and manufacturing the standards type as well as the customized type gear reducer for our customers.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Application: | Machinery |
|---|---|
| Function: | Speed Changing, Speed Reduction |
| Layout: | Coaxial |
| Hardness: | Hardened Tooth Surface |
| Installation: | Horizontal Type |
| Step: | Three-Step |
| Customization: |
Available
| Customized Request |
|---|

Planetary Gearbox Advantages and Disadvantages
A planetary gearbox is a type of mechanical drive with a single output shaft. They are suitable for both clockwise and counterclockwise rotations, have less inertia, and operate at higher speeds. Here are some advantages and disadvantages of this type of gearbox. Let us see what these advantages are and why you should use them in your applications. Listed below are some of the benefits of planetary gearboxes.
Suitable for counterclockwise and clockwise rotation
If you want to teach children about the clock hands, you can buy some resources for counterclockwise and asymmetrical rotation. These resources include worksheets for identifying degrees of rotation, writing rules for rotation, and visual processing. You can also use these resources to teach angles. For example, the translation of shapes activity pack helps children learn about the rotation of geometric shapes. Similarly, the visual perception activity sheet helps children understand how to process information visually.
Various studies have been done to understand the anatomical substrate of rotations. In a recent study, CZPT et al. compared the position of the transitional zone electrocardiographically and anatomically. The authors found that the transitional zone was normal in nine of 33 subjects, indicating that rotation is not a sign of disease. Similarly, a counterclockwise rotation may be caused by a genetic or environmental factor.
The core tip data should be designed to work in both clockwise and counterclockwise rotation. Counterclockwise rotation requires a different starting point than a clockwise rotation. In North America, star-delta starting is used. In both cases, the figure is rotated about its point. Counterclockwise rotation, on the other hand, is done in the opposite direction. In addition, it is possible to create counterclockwise rotation using the same gimbal.
Despite its name, both clockwise and counterclockwise rotation requires a certain amount of force to rotate. When rotating clockwise, the object faces upwards. Counterclockwise rotation, on the other hand, starts from the top position and heads to the right. If rotating in the opposite direction, the object turns counterclockwise, and vice versa. The clockwise movement, in contrast, is the reverse of counterclockwise rotation.
Has less inertia
The primary difference between a planetary gearbox and a normal pinion-and-gear reducer is the ratio. A planetary gearbox will produce less inertia, which is an important advantage because it will reduce torque and energy requirements. The ratio of the planetary gearbox to its fixed axis counterpart is a factor of three. A planetary gearbox has smaller gears than a conventional planetary, so its inertia is proportional to the number of planets.
Planetary gears are less inertia than spur gears, and they share the load across multiple gear teeth. This means that they will have low backlash, and this is essential for applications with high start-stop cycles and frequent rotational direction changes. Another benefit is the high stiffness. A planetary gearbox will have less backlash than a spur gearbox, which means that it will be more reliable.
A planetary gearbox can use either spur or helical gears. The former provides higher torque ratings while the latter has less noise and stiffness. Both types of gears are useful in motorsports, aerospace, truck transmissions, and power generation units. They require more assembly time than a conventional parallel shaft gear, but the PD series is the more efficient alternative. PD series planetary gears are suitable for many applications, including servo and robotics.
In contrast, a planetary gear set can have varying input speed. This can affect the frequency response of the gearset. A mathematical model of the two-stage planetary gears has non-stationary effects and correlates with experimental findings. Fig. 6.3 shows an addendum. The dedendum’s minimum value is approximately 1.25m. When the dedendum is at its smallest, the dedendum has less inertia.
Offers greater reliability
The Planetary Gearbox is a better option for driving a vehicle than a standard spur gearbox. A planetary gearbox is less expensive, and they have better backlash, higher load capacity, and greater shock loads. Unlike spur gearboxes, however, mechanical noise is virtually nonexistent. This makes them more reliable in high-shock situations, as well as in a wide range of applications.
The Economy Series has the same power density and torque capacity of the Precision Helical Series, but it lacks the precision of the latter. In contrast, Economy Series planetary gearboxes feature straight spur planetary gearing, and they are used in applications requiring high torque. Both types of gearboxes are compatible with NEMA servo motors. If torque density is important, a planetary gearbox is the best choice.
The Dispersion of External Load: The SSI model has been extensively used to model the reliability of planetary gear systems. This model takes the contact force and fatigue strength of the system as generalized stress and strength. It also provides a theoretical framework to evaluate the reliability of planetary gear systems. It also has many other advantages that make it the preferred choice for high-stress applications. The Planetary Gearbox offers greater reliability and efficiency than traditional rack and pinion gear systems.
Planetary gearing has greater reliability and compact design. Its compact design allows for wider applications with concerns about space and weight. Additionally, the increased torque and reduction makes planetary gearboxes an excellent choice for a wide variety of applications. There are three major types of planetary gearboxes, each with its own advantages. This article describes a few of them. Once you understand their workings, you will be able to choose the best planetary gearbox for your needs.
Has higher operating speeds
When you look at planetary gearboxes, you might be confused about which one to choose. The primary issue is the application of the gearbox. You must also decide on secondary factors like noise level, corrosion resistance, construction, price, and availability worldwide. Some constructors work faster than others and deliver the gearboxes on the same day. However, the latter ones often deliver the planetary gearbox out of stock.
Compared to conventional gearboxes, a planetary gearbox can run at higher speeds when the input speed fluctuates. However, these gears are not very efficient in high-speed applications because of their increased noise levels. This makes planetary gears unsuitable for applications involving a great deal of noise. That is why most planetary gears are used in small-scale applications. There are some exceptions, but in general, a planetary gearbox is better suited for applications with higher operating speeds.
The basic planetary gearbox is a compact alternative to normal pinion-and-gear reducers. They can be used in a wide variety of applications where space and weight are concerns. Its efficiency is also higher, delivering 97% of the power input. It comes in three different types based on the performance. A planetary gearbox can also be classified as a worm gear, a spur gear, or a sprocket.
A planetary gearhead has a high-precision design and can generate substantial torque for their size. It also reduces backlash to two arc-min. Additionally, it is lubricated for life, which means no maintenance is needed. It can fit into a small machine envelope and has a small footprint. Moreover, the helical crowned gearing provides fast positioning. A sealed gearbox prevents abrasive dust from getting into the planetary gearhead.
Has drawbacks
The design of a planetary gearbox is compact and enables high torque and load capability in a small space. This gear arrangement also reduces the possibility of wear and tear. Planet gears are arranged in a planetary fashion, allowing gears to shift under load and a uniform distribution of torque. However, some disadvantages of planetary gears must be considered before investing in this gearbox.
While the planetary gearbox is a high precision motion-control device, its design and maintenance requirements are a concern. The bearing load is high, requiring frequent lubrication. Also, they are inaccessible. Despite these drawbacks, planetary gearboxes are suitable for a variety of tasks. They also have low backlash and high torsional stiffness, making them excellent choices for many applications.
As a result, the speed of a planetary gearbox varies with load and speed. At lower ratios, the sun gear becomes too large in relation to the planet gears. As the ratio increases, the sun gear will become too low, reducing torque. The planetary gears also reduce their torque in high-speed environments. Consequently, the ratio is a crucial consideration for planetary gearbox condition monitoring.
Excess drag may result from out-of-tolerance components or excessive lubrication. Drag should be measured both in directions and be within acceptable ranges. Grease and oil lubrication are two common planetary gearbox lubricants, but the choice is largely dependent on your application. While grease lubricates planetary gears well, oil needs maintenance and re-lubrication every few thousand hours.


editor by CX 2024-04-03
China Standard 3V Small Reduction Motor Gearbox with 12rpm Ratio 864: 1 planetary gearbox backlash
Product Description
3V Small Reduction Motor Gearbox With 12Rpm Ratio 864:1
Product Description
Specifications:
Rated voltage: 3.0 V DC
Rotation direction: CW/CCW
Reduction ratio: 864/1
Operating temperature range: -10-50ºC
Storage temperature range: -20-60ºC
Overall length: 35.9mm
Gearbox length: 20.9mm
rated torque of gearbox: 600gf.cm
instant torque of gearbox: 1,200gf.cm
Output power: 0.01-0.6W
Output Shaft: Metal
No load:
Speed: 12 rpm
Current: 135 mA
On Load:
Rated speed: 13 rpm
Rated current: 95 mA
Rated torque: 547 gf.cm
|
Model |
Application Parameters | Rated Torque of Gear Box | Instant Torque of Gear Box | Gear Ratio | Gear Box Length L1 |
|||||||
| Rated | At No Load | At Rated Load | Overall Length L |
|||||||||
| Voltage | Speed | Current | Speed | Current | Torque | |||||||
| VDC | rpm | mA | rpm | mA | gf.cm | mN.m | mm | gf.cm | gf.cm | mm | ||
| ZWPD012012-64 | 3.0 | 174 | 90 | 156 | 135 | 54 | 5.3 | 32.1 | 600 | 1200 | 64 | 17.1 |
| ZWPD012012-96 | 3.0 | 116 | 90 | 104 | 135 | 81 | 7.9 | 600 | 1200 | 96 | ||
| ZWPD012012-144 | 3.0 | 77 | 90 | 69 | 135 | 122 | 11.9 | 600 | 1200 | 144 | ||
| ZWPD012012-216 | 3.0 | 52 | 90 | 46 | 135 | 182 | 17.9 | 600 | 1200 | 216 | ||
| ZWPD012012-256 | 3.0 | 44 | 95 | 39 | 135 | 162 | 15.9 | 35.9 | 850 | 1700 | 256 | 20.9 |
| ZWPD012012-384 | 3.0 | 29 | 95 | 26 | 135 | 243 | 23.8 | 850 | 1700 | 384 | ||
| ZWPD012012-576 | 3.0 | 19 | 95 | 17 | 135 | 365 | 35.7 | 850 | 1700 | 576 | ||
| ZWPD012012-864 | 3.0 | 13 | 95 | 12 | 135 | 547 | 53.6 | 850 | 1700 | 864 | ||
| ZWPD012012-1296 | 3.0 | 9 | 95 | 8 | 135 | 820 | 80.4 | 850 | 1700 | 1296 | ||
above specifications just for reference and customizable according to requirements.
Integrated Drive Control Module.
Please let us know your requirements and we will provide you with micro transmission solutions.
2D Drawing:
Detailed Photos
Application
| Smart wearable devices | watch,VR,AR,XR and etc. |
| Household application | kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc. |
| communication equipment | 5G base station,video conference,mobile phone and etc. |
| Office automation equipments | scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine, screen, lifting socket, display,notebook PC and etc. |
| Automotive products | conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc. |
| Toys and models | radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc. |
| Medical equipments | blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc. |
| Industrials | flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc. |
| Electric power tools | electric drill, screwdriver,garden tool and etc. |
| Precision instruments | optics instruments,automatic vending machine, wire-stripping machine and etc. |
| Personal care | tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc. |
| Consumer electronics | camera, mobile phone,digital camera, automatic retracting device,camcorder, kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc. |
| robots | educational robot, programming robot, medical robot, escort robot and etc. |
Company Profile
HangZhou CZPT Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly.
Workshop
Testing Equipment
1) Competitive Advantages
- 1) Competitive Advantages
19+year experience in manufacturing motor gearbox
We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
Competitive Price
Product Performance: Low noise, High efficiency, Long lifespan
Prompt Delivery: 15 working days after payment
Small Orders Accepted
2) Main Products
-
Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,
- Customized worm and gear transmission machinery;
- Precise electromechanical motion module;
- Precise component and assembly of plastic and metal powder injection.
Our Services
- ODM & OEM
- Gearbox design and development
- Related technology support
- Micro drive gearbox custom solution
Packaging & Shipping
1) Packing Details
packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.
2) Shipping Details
samples will be shipped within 10 days;
batch order leading time according to the actual situation.
Certifications
Certifications
We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).
and more…
FAQ
FAQ
1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.
2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.
3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.
4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.
5. Do you provide technology support?
YES. Our company have design and development team, we can provide technology support if you
need.
6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide.
7.How to pay the money?
We accept T/T in advance. Also we have different bank account for receiving money, like US dollors or RMB etc.
8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your requirement of specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.
9. Can I come to your company to visit?
YES, you can come to our company to visit at anytime, and welcome to visit our company.
10. How do contact us ?
Please send an inquiry
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Application: | Motor, Toy, Car, Office Automation Electronics |
|---|---|
| Function: | Change Drive Torque, Speed Reduction |
| Layout: | Customize |
| Hardness: | Hardened Tooth Surface |
| Installation: | Customize |
| Step: | Customize |
| Samples: |
US$ 82/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
| Customized Request |
|---|

Planetary Gearbox Advantages and Disadvantages
A planetary gearbox is a type of mechanical drive with a single output shaft. They are suitable for both clockwise and counterclockwise rotations, have less inertia, and operate at higher speeds. Here are some advantages and disadvantages of this type of gearbox. Let us see what these advantages are and why you should use them in your applications. Listed below are some of the benefits of planetary gearboxes.
Suitable for counterclockwise and clockwise rotation
If you want to teach children about the clock hands, you can buy some resources for counterclockwise and asymmetrical rotation. These resources include worksheets for identifying degrees of rotation, writing rules for rotation, and visual processing. You can also use these resources to teach angles. For example, the translation of shapes activity pack helps children learn about the rotation of geometric shapes. Similarly, the visual perception activity sheet helps children understand how to process information visually.
Various studies have been done to understand the anatomical substrate of rotations. In a recent study, CZPT et al. compared the position of the transitional zone electrocardiographically and anatomically. The authors found that the transitional zone was normal in nine of 33 subjects, indicating that rotation is not a sign of disease. Similarly, a counterclockwise rotation may be caused by a genetic or environmental factor.
The core tip data should be designed to work in both clockwise and counterclockwise rotation. Counterclockwise rotation requires a different starting point than a clockwise rotation. In North America, star-delta starting is used. In both cases, the figure is rotated about its point. Counterclockwise rotation, on the other hand, is done in the opposite direction. In addition, it is possible to create counterclockwise rotation using the same gimbal.
Despite its name, both clockwise and counterclockwise rotation requires a certain amount of force to rotate. When rotating clockwise, the object faces upwards. Counterclockwise rotation, on the other hand, starts from the top position and heads to the right. If rotating in the opposite direction, the object turns counterclockwise, and vice versa. The clockwise movement, in contrast, is the reverse of counterclockwise rotation.
Has less inertia
The primary difference between a planetary gearbox and a normal pinion-and-gear reducer is the ratio. A planetary gearbox will produce less inertia, which is an important advantage because it will reduce torque and energy requirements. The ratio of the planetary gearbox to its fixed axis counterpart is a factor of three. A planetary gearbox has smaller gears than a conventional planetary, so its inertia is proportional to the number of planets.
Planetary gears are less inertia than spur gears, and they share the load across multiple gear teeth. This means that they will have low backlash, and this is essential for applications with high start-stop cycles and frequent rotational direction changes. Another benefit is the high stiffness. A planetary gearbox will have less backlash than a spur gearbox, which means that it will be more reliable.
A planetary gearbox can use either spur or helical gears. The former provides higher torque ratings while the latter has less noise and stiffness. Both types of gears are useful in motorsports, aerospace, truck transmissions, and power generation units. They require more assembly time than a conventional parallel shaft gear, but the PD series is the more efficient alternative. PD series planetary gears are suitable for many applications, including servo and robotics.
In contrast, a planetary gear set can have varying input speed. This can affect the frequency response of the gearset. A mathematical model of the two-stage planetary gears has non-stationary effects and correlates with experimental findings. Fig. 6.3 shows an addendum. The dedendum’s minimum value is approximately 1.25m. When the dedendum is at its smallest, the dedendum has less inertia.
Offers greater reliability
The Planetary Gearbox is a better option for driving a vehicle than a standard spur gearbox. A planetary gearbox is less expensive, and they have better backlash, higher load capacity, and greater shock loads. Unlike spur gearboxes, however, mechanical noise is virtually nonexistent. This makes them more reliable in high-shock situations, as well as in a wide range of applications.
The Economy Series has the same power density and torque capacity of the Precision Helical Series, but it lacks the precision of the latter. In contrast, Economy Series planetary gearboxes feature straight spur planetary gearing, and they are used in applications requiring high torque. Both types of gearboxes are compatible with NEMA servo motors. If torque density is important, a planetary gearbox is the best choice.
The Dispersion of External Load: The SSI model has been extensively used to model the reliability of planetary gear systems. This model takes the contact force and fatigue strength of the system as generalized stress and strength. It also provides a theoretical framework to evaluate the reliability of planetary gear systems. It also has many other advantages that make it the preferred choice for high-stress applications. The Planetary Gearbox offers greater reliability and efficiency than traditional rack and pinion gear systems.
Planetary gearing has greater reliability and compact design. Its compact design allows for wider applications with concerns about space and weight. Additionally, the increased torque and reduction makes planetary gearboxes an excellent choice for a wide variety of applications. There are three major types of planetary gearboxes, each with its own advantages. This article describes a few of them. Once you understand their workings, you will be able to choose the best planetary gearbox for your needs.
Has higher operating speeds
When you look at planetary gearboxes, you might be confused about which one to choose. The primary issue is the application of the gearbox. You must also decide on secondary factors like noise level, corrosion resistance, construction, price, and availability worldwide. Some constructors work faster than others and deliver the gearboxes on the same day. However, the latter ones often deliver the planetary gearbox out of stock.
Compared to conventional gearboxes, a planetary gearbox can run at higher speeds when the input speed fluctuates. However, these gears are not very efficient in high-speed applications because of their increased noise levels. This makes planetary gears unsuitable for applications involving a great deal of noise. That is why most planetary gears are used in small-scale applications. There are some exceptions, but in general, a planetary gearbox is better suited for applications with higher operating speeds.
The basic planetary gearbox is a compact alternative to normal pinion-and-gear reducers. They can be used in a wide variety of applications where space and weight are concerns. Its efficiency is also higher, delivering 97% of the power input. It comes in three different types based on the performance. A planetary gearbox can also be classified as a worm gear, a spur gear, or a sprocket.
A planetary gearhead has a high-precision design and can generate substantial torque for their size. It also reduces backlash to two arc-min. Additionally, it is lubricated for life, which means no maintenance is needed. It can fit into a small machine envelope and has a small footprint. Moreover, the helical crowned gearing provides fast positioning. A sealed gearbox prevents abrasive dust from getting into the planetary gearhead.
Has drawbacks
The design of a planetary gearbox is compact and enables high torque and load capability in a small space. This gear arrangement also reduces the possibility of wear and tear. Planet gears are arranged in a planetary fashion, allowing gears to shift under load and a uniform distribution of torque. However, some disadvantages of planetary gears must be considered before investing in this gearbox.
While the planetary gearbox is a high precision motion-control device, its design and maintenance requirements are a concern. The bearing load is high, requiring frequent lubrication. Also, they are inaccessible. Despite these drawbacks, planetary gearboxes are suitable for a variety of tasks. They also have low backlash and high torsional stiffness, making them excellent choices for many applications.
As a result, the speed of a planetary gearbox varies with load and speed. At lower ratios, the sun gear becomes too large in relation to the planet gears. As the ratio increases, the sun gear will become too low, reducing torque. The planetary gears also reduce their torque in high-speed environments. Consequently, the ratio is a crucial consideration for planetary gearbox condition monitoring.
Excess drag may result from out-of-tolerance components or excessive lubrication. Drag should be measured both in directions and be within acceptable ranges. Grease and oil lubrication are two common planetary gearbox lubricants, but the choice is largely dependent on your application. While grease lubricates planetary gears well, oil needs maintenance and re-lubrication every few thousand hours.


editor by CX 2024-04-03
China best Gp60b Traverse Box Rolling Ring Drive for Wire Spooling Machine
Product Description
Product Description
GP60B traverse box rolling ring drive for wire spooling machine
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force
| Type | GP60B |
| Shaft Diameter | 60 mm |
| Number of Rolling Rings | 3 Pieces |
| Maximum Thrust(N) | 1000 N |
| Weight-Bearing(KG) | 100 kg |
| Maximum Pitch(mm) | 48 mm |
| Weight(KG) | 50 kg |
Product Parameters
Detailed Photos
ROTATION DIRECTION (CAN CHANGE)
Packaging & Shipping
|
Package Material
|
Wooden Box or Carton |
|
Package Detail
|
1piece or 5 pieces per carton package or wooden carton |
|
Delivery Way
|
Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement |
Product Application
Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
Different Type of Product
Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.
B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts.
C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts.
FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.
Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.
Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Color: | Fixed |
|---|---|
| Customized: | Customized |
| Standard: | National |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|

Are there innovations or advancements in pitch drive technology that have emerged recently?
Yes, there have been significant innovations and advancements in pitch drive technology that have emerged recently. These developments aim to improve the performance, efficiency, reliability, and functionality of pitch drives in various applications. Here’s a detailed explanation of some recent innovations in pitch drive technology:
- Advanced Materials and Design: Recent advancements in material science and engineering have led to the development of advanced materials and design techniques for pitch drives. These include the use of lightweight and high-strength materials, such as carbon fiber composites, to reduce the weight of the pitch system components without compromising structural integrity. Advanced design methodologies, such as topology optimization and additive manufacturing, enable the creation of complex and optimized geometries, enhancing the performance and efficiency of pitch drives.
- Smart and Integrated Control Systems: The integration of smart and integrated control systems is a notable advancement in pitch drive technology. These systems combine advanced control algorithms, real-time data analysis, and machine learning techniques to enable more precise and adaptive control of pitch adjustments. Smart control systems can optimize pitch angles based on real-time environmental conditions, system performance, and power demand, resulting in improved energy capture, reduced loads, and enhanced overall efficiency.
- Condition Monitoring and Predictive Maintenance: Recent innovations in pitch drive technology include the implementation of condition monitoring and predictive maintenance techniques. By integrating sensors, data analytics, and machine learning algorithms, pitch drives can continuously monitor their own health and performance. This allows for the early detection of anomalies, degradation, or impending failures. Predictive maintenance strategies based on the collected data can then be employed to schedule maintenance activities proactively, minimizing downtime and optimizing the lifespan of pitch drives.
- Fault-Tolerant Designs: Fault-tolerant designs have emerged as a significant advancement in pitch drive technology. These designs incorporate redundancy and robustness features to ensure the continued operation of pitch drives even in the presence of component failures or faults. Redundant sensors, actuators, or control modules can be implemented to maintain functionality and safety. Fault-tolerant designs improve the reliability, availability, and safety of pitch drives in critical applications, such as wind turbines or marine propulsion systems.
- Wireless Monitoring and Control: The integration of wireless monitoring and control capabilities is another recent innovation in pitch drive technology. Wireless technologies, such as Bluetooth, Wi-Fi, or cellular networks, enable remote monitoring and control of pitch drives. This allows for real-time data acquisition, performance analysis, and system adjustments from a central control station or through mobile devices. Wireless monitoring and control enhance convenience, accessibility, and scalability in managing pitch drives across multiple installations or locations.
- Energy Storage Integration: Innovations in pitch drive technology also include the integration of energy storage systems. Energy storage devices, such as batteries or supercapacitors, can be combined with pitch drives to store excess energy during low-demand periods and release it during high-demand periods. This integration improves the overall energy management, enhances grid stability, and allows for better utilization of renewable energy sources.
These recent innovations and advancements in pitch drive technology demonstrate the ongoing efforts to enhance the performance, efficiency, reliability, and functionality of adjustable systems. By leveraging advanced materials, smart control systems, condition monitoring, fault-tolerant designs, wireless capabilities, and energy storage integration, pitch drives are becoming more capable, intelligent, and adaptable, enabling their effective deployment in a wide range of applications.

Can you provide examples of products or machinery that commonly use pitch drives?
There are several products and machinery in various industries that commonly use pitch drives for precise and controlled pitch adjustments. These pitch drives play a crucial role in optimizing performance, efficiency, and safety. Here are some examples of products or machinery that commonly use pitch drives:
- Wind Turbines: Pitch drives are extensively used in wind turbines to adjust the pitch angle of the turbine blades. By changing the pitch angle, the rotor’s aerodynamic characteristics can be optimized to capture the maximum amount of wind energy. Pitch drives allow wind turbine operators to control the rotational speed, regulate power output, and ensure safe operation under varying wind conditions.
- Helicopters: Helicopters rely on pitch drives to adjust the pitch angle of the rotor blades. Pitch adjustments enable the helicopter to generate lift, control its altitude, and maneuver in different directions. By changing the pitch angle of individual rotor blades, pitch drives allow for precise control of the helicopter’s flight characteristics, including stability, responsiveness, and load distribution.
- Marine Propulsion Systems: Pitch drives are commonly used in marine propulsion systems, such as controllable pitch propellers (CPP) or azimuth thrusters. Pitch adjustments in marine propulsion systems allow vessels to optimize their propulsion efficiency, maneuverability, and dynamic positioning capabilities. By changing the pitch angle of the propeller blades, pitch drives enable vessels to adapt to varying operating conditions, such as different speeds, sea states, or maneuvering requirements.
- Aircraft Propellers: Aircraft with variable-pitch propellers utilize pitch drives to adjust the pitch angle of the propeller blades. By changing the propeller blade pitch, the aircraft can optimize performance during different phases of flight, such as takeoff, climb, cruise, or descent. Pitch drives allow for efficient power management, improved thrust-to-weight ratio, and enhanced control over the aircraft’s speed and climb rate.
- Industrial Fans: Industrial fans, such as those used in HVAC systems or cooling applications, often incorporate pitch drives for blade angle adjustment. By adjusting the pitch angle of the fan blades, pitch drives enable precise control of airflow, pressure, and energy consumption. This control allows for optimized cooling performance, improved ventilation, and energy efficiency in industrial and commercial settings.
- Propulsion Systems for Unmanned Aerial Vehicles (UAVs): UAVs, or drones, commonly utilize pitch drives in their propulsion systems. By adjusting the pitch angle of the propellers, pitch drives enable UAVs to control their altitude, stability, and maneuverability. This control is crucial for various applications, including aerial photography, surveillance, package delivery, and scientific research.
These examples highlight the diverse range of products and machinery that commonly use pitch drives for precise and controlled pitch adjustments. Other industries, such as the automotive, robotics, and power generation sectors, may also employ pitch drives in specific applications where pitch angle control is essential for optimized performance and operational safety.

In what industries or scenarios are pitch drives commonly employed?
Pitch drives are commonly employed in various industries and scenarios where precise control over the pitch angle of rotating components is necessary. The utilization of pitch drives spans across multiple sectors due to the importance of controlling the performance and efficiency of rotating machinery. Here’s a detailed explanation of the industries and scenarios where pitch drives are commonly employed:
Pitch drives find extensive applications in the following industries:
- Aerospace and Aviation: In the aerospace and aviation industry, pitch drives are widely utilized in aircraft propulsion systems. They play a critical role in controlling the pitch angle of aircraft propellers or turbofan engines. By adjusting the pitch angle, pilots or automated control systems can optimize thrust, fuel efficiency, and overall aircraft performance. Pitch drives ensure efficient power delivery, maneuverability, and safe operation of aircraft.
- Renewable Energy: Pitch drives are essential components in wind turbines used for generating renewable energy. They allow for precise control of the pitch angle of wind turbine blades. By adjusting the pitch angle, wind turbines can optimize power output based on wind speed and direction. Pitch drives enable wind turbines to capture maximum wind energy, improve efficiency, and ensure safe operation under various wind conditions.
- Marine and Shipbuilding: In the marine and shipbuilding industry, pitch drives are commonly employed in ship propulsion systems. They control the pitch angle of ship propellers, azimuth thrusters, or waterjet propulsion systems. Pitch drives enable precise control of thrust and maneuverability, allowing ships to navigate efficiently in different operating conditions, such as varying speeds, sea states, and maneuvering requirements.
- Oil and Gas: Pitch drives are utilized in various applications within the oil and gas industry. They are employed in equipment such as gas compressors, pumps, and offshore drilling rigs. By controlling the pitch angle of rotating components, pitch drives optimize performance, efficiency, and flow characteristics in these systems. They ensure reliable and efficient operation in upstream, midstream, and downstream oil and gas processes.
- Power Generation: Pitch drives are also employed in power generation systems, particularly in hydroelectric power plants. They control the pitch angle of turbine blades in hydro turbines. By adjusting the pitch angle, the power output can be optimized based on water flow rates and electricity demand. Pitch drives allow for efficient utilization of water resources and enable stable and reliable power generation.
- Industrial Manufacturing: In the industrial manufacturing sector, pitch drives are used in various applications. They can be found in machinery such as fans, blowers, mixers, and agitators. By controlling the pitch angle of rotating components, pitch drives optimize airflow, fluid dynamics, and mixing efficiency in industrial processes. They ensure consistent and reliable performance in sectors such as chemical, pharmaceutical, food processing, and automotive manufacturing.
Overall, pitch drives are commonly employed in industries and scenarios where precise control over the pitch angle of rotating components is crucial. Their usage spans across aerospace, renewable energy, marine, oil and gas, power generation, and industrial manufacturing sectors, among others. Pitch drives enable optimization of performance, efficiency, and control in various applications, contributing to the smooth and reliable operation of machinery and systems.


editor by CX 2024-04-03
China wholesaler Gp40A Traverse Box Rolling Ring Drive for Wire Spooling Machine
Product Description
Product Description
GP40A traverse box rolling ring drive for wire spooling machine
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force
| Type | GP40A |
| Shaft Diameter | 40 mm |
| Number of Rolling Rings | 3 Pieces |
| Maximum Thrust(N) | 420 N |
| Weight-Bearing(KG) | 42 kg |
| Maximum Pitch(mm) | 32 mm |
| Weight(KG) | 12 kg |
Product Parameters
Detailed Photos
ROTATION DIRECTION (CAN CHANGE)
Packaging & Shipping
|
Package Material
|
Wooden Box or Carton |
|
Package Detail
|
1piece or 5 pieces per carton package or wooden carton |
|
Delivery Way
|
Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement |
Product Application
Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
Different Type of Product
Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.
B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts.
C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts.
FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.
Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.
Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Color: | Fixed |
|---|---|
| Customized: | Customized |
| Standard: | National |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|

How does the choice of pitch drives affect the overall performance and reliability of adjustable systems?
The choice of pitch drives has a significant impact on the overall performance and reliability of adjustable systems. Here’s a detailed explanation of how the choice of pitch drives affects these aspects:
- Performance:
The performance of adjustable systems, such as wind turbines or rotor blades, depends on the effectiveness and responsiveness of the pitch control mechanism. The choice of pitch drives directly influences the system’s ability to adjust the pitch angles accurately, quickly, and precisely. Several factors contribute to the performance impact:
- Speed and Responsiveness: The speed at which pitch drives can adjust the pitch angles affects the system’s ability to optimize performance in changing wind conditions. High-performance pitch drives with fast response times enable quicker and more precise adjustments, allowing the system to capture more energy from the wind and maintain optimal operating conditions.
- Control Accuracy: The accuracy of pitch angle control is crucial for maintaining the desired power output, load distribution, and overall system stability. The choice of pitch drives with precise control mechanisms ensures that the adjustable components accurately follow the control commands, minimizing deviations from the desired pitch angles and maximizing energy capture.
- Dynamic Performance: Adjustable systems often experience dynamic loads and varying wind conditions. The choice of pitch drives with robust dynamic performance characteristics, such as high torque capacity and low inertia, allows the system to effectively respond to dynamic loads, maintain stability, and optimize power generation.
- Reliability:
The reliability of adjustable systems is heavily influenced by the choice of pitch drives. The reliability aspect encompasses the system’s ability to operate consistently, withstand environmental conditions, and minimize the risk of failures or malfunctions. The choice of pitch drives impacts reliability in the following ways:
- Durability and Longevity: High-quality pitch drives designed for industrial applications provide durability and extended service life. They can withstand the operational stresses, environmental conditions, and mechanical loads associated with adjustable systems, reducing the likelihood of premature failures and the need for frequent replacements.
- Mechanical Integrity: The mechanical integrity of pitch drives, including the gears, bearings, and other moving components, is crucial for reliable operation. Choosing pitch drives from reputable manufacturers with a track record of reliable products ensures the use of robust and well-engineered components that can withstand continuous operation and minimize the risk of mechanical failures.
- Maintenance and Serviceability: The choice of pitch drives can influence the ease of maintenance and serviceability of adjustable systems. Well-designed pitch drives with accessible maintenance points, clear documentation, and available spare parts facilitate routine maintenance tasks, inspections, and repairs, reducing downtime and enhancing overall system reliability.
- Environmental Considerations: Adjustable systems often operate in challenging environmental conditions, such as high winds, temperature variations, and exposure to dust, moisture, or corrosive elements. The choice of pitch drives that are specifically designed and tested for such environments ensures resistance to environmental stresses, enhancing the reliability and longevity of the system.
In summary, the choice of pitch drives significantly affects the performance and reliability of adjustable systems. The selection of pitch drives with high-speed responsiveness, precise control accuracy, and robust dynamic performance optimizes the system’s performance in varying wind conditions. Additionally, choosing pitch drives with durability, mechanical integrity, ease of maintenance, and environmental suitability enhances the overall reliability of the system by minimizing the risk of failures, extending service life, and facilitating maintenance activities.

What maintenance practices are recommended for pitch drives to ensure optimal functionality?
Maintenance practices play a crucial role in ensuring the optimal functionality and longevity of pitch drives. Regular maintenance helps identify and address potential issues, minimize downtime, and maximize the performance and reliability of pitch drives. Here are some recommended maintenance practices for pitch drives:
- Inspection and Cleaning: Regular visual inspections should be conducted to identify any signs of wear, damage, or contamination. The pitch drives should be cleaned to remove dirt, debris, or environmental contaminants that can affect their performance. This includes cleaning the external surfaces as well as inspecting internal components, such as bearings, seals, and electrical connections.
- Lubrication: Proper lubrication is essential for the smooth operation of pitch drives. The lubrication schedule recommended by the manufacturer should be followed, and appropriate lubricants should be used. This helps reduce friction, minimize wear, and prolong the life of moving parts, such as gears, bearings, and sliding surfaces.
- Torque and Tension Checks: Regular checks should be performed to ensure that the fasteners, bolts, and connections in the pitch drive system are properly torqued and tightened. Any loose or damaged fasteners should be addressed promptly to prevent potential issues, such as misalignment or component failure.
- Electrical System Maintenance: If the pitch drive incorporates electrical components, regular inspections and testing of the electrical system should be conducted. This includes checking the wiring integrity, insulation, and connections, as well as verifying the performance of sensors, actuators, and control systems. Any abnormalities or malfunctions should be addressed promptly to maintain the electrical functionality of the pitch drives.
- Alignment and Calibration: Periodic alignment and calibration of the pitch drives are important to ensure accurate and precise pitch adjustments. Misalignment can lead to improper load distribution, increased wear, or reduced performance. The alignment and calibration procedures recommended by the manufacturer should be followed to maintain the optimal functionality of the pitch drives.
- Condition Monitoring: Implementing condition monitoring techniques, such as vibration analysis, thermal imaging, or oil analysis, can help detect early signs of potential issues in pitch drives. By monitoring key parameters and analyzing trends, maintenance personnel can identify abnormal behavior or degradation in components, allowing for proactive maintenance actions to be taken before major failures occur.
- Record Keeping and Documentation: Maintaining detailed records of maintenance activities, inspections, repairs, and component replacements is essential. This documentation helps track the maintenance history, identify recurring issues, and ensure that maintenance tasks are performed at appropriate intervals. It also aids in warranty claims, troubleshooting, and future maintenance planning.
It’s important to note that maintenance practices may vary depending on the specific type of pitch drive, manufacturer’s recommendations, and operating conditions. Following the manufacturer’s guidelines, consulting maintenance manuals, and seeking professional assistance when needed are essential for implementing the most appropriate maintenance practices for the specific pitch drive system.
By implementing regular maintenance practices, pitch drives can operate optimally, minimize the risk of unexpected failures, and contribute to the overall efficiency, performance, and reliability of the machinery or systems they are a part of.

What are the different types and configurations of pitch drives available in the market?
There are several different types and configurations of pitch drives available in the market, each designed to suit specific applications and requirements. These pitch drives vary in their mechanisms, actuation methods, and configurations. Here’s a detailed explanation of the different types and configurations of pitch drives:
1. Hydraulic Pitch Drives: Hydraulic pitch drives use hydraulic actuators to control the pitch angle. They typically consist of hydraulic cylinders or hydraulic motors connected to the rotating components. Hydraulic systems offer high force or torque output, precise control, and the ability to handle heavy loads. Hydraulic pitch drives are commonly used in large-scale applications such as wind turbines and marine propulsion systems.
2. Pneumatic Pitch Drives: Pneumatic pitch drives utilize pneumatic actuators, such as pneumatic cylinders, to adjust the pitch angle. They operate by using compressed air or gas to generate the necessary force or torque. Pneumatic pitch drives are often employed in applications where a clean and dry power source is required, or in situations where hydraulic systems are not feasible or preferred.
3. Electric Pitch Drives: Electric pitch drives employ electric actuators, such as electric motors or electric linear actuators, to control the pitch angle. They can be powered by AC or DC electricity and offer precise control, high responsiveness, and flexibility in terms of control algorithms and integration with control systems. Electric pitch drives are commonly found in aircraft propellers, small wind turbines, and industrial machinery.
4. Mechanical Pitch Drives: Mechanical pitch drives utilize mechanical linkages, gears, or cam mechanisms to adjust the pitch angle. They convert rotational motion to linear or angular displacement for pitch adjustment. Mechanical pitch drives are often used in small-scale applications where simplicity, compactness, and lightweight design are essential. They can be found in small wind turbines, model aircraft, or mechanical systems with lower power requirements.
5. Linear Pitch Drives: Linear pitch drives are designed to achieve linear pitch angle adjustment instead of rotational. They utilize linear actuators, such as electric linear actuators or hydraulic cylinders, to extend or retract the pitch mechanism in a linear motion. Linear pitch drives are commonly used in applications where linear movement is required, such as certain types of propellers or control surfaces.
6. Individual Blade Pitch Drives: Individual blade pitch drives allow for independent control and adjustment of each blade in multi-blade systems. They enable optimized performance and load distribution across the blades, especially in applications such as wind turbines or helicopter rotor systems. Individual blade pitch drives can be hydraulic, pneumatic, or electric, depending on the specific requirements and complexity of the system.
7. Collective Pitch Drives: Collective pitch drives adjust the pitch angle of all blades simultaneously. They are commonly used in applications where coordinated pitch adjustments are necessary, such as helicopter main rotors or certain types of wind turbines. Collective pitch drives can be hydraulic, pneumatic, or electric, depending on the system’s design and requirements.
8. Integrated Control Systems: Some pitch drives come with integrated control systems, which include sensors, signal processing units, and control algorithms. These integrated control systems allow for automated and precise pitch angle adjustment based on various input parameters, such as wind speed, rotational speed, or pilot commands. Integrated control systems enhance the efficiency, safety, and overall performance of pitch drives in various applications.
It’s important to note that the availability and suitability of different types and configurations of pitch drives may vary depending on the specific industry, application, and technological advancements. Manufacturers and suppliers in the market offer a range of pitch drive options to cater to different needs and requirements.


editor by CX 2024-04-03
China Standard 30mm Shaft Traverse Unit Gp3-30b Rolling Ring Drive with Guide Roller
Product Description
Product Description
30mm shaft traverse unit GP3-30B rolling ring drive with guide roller
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force
| Type | GP30B |
| Shaft Diameter | 30 mm |
| Number of Rolling Rings | 3 Pieces |
| Maximum Thrust(N) | 260 N |
| Weight-Bearing(KG) | 26 kg |
| Maximum Pitch(mm) | 25 mm |
| Weight(KG) | 4.5 kg |
Product Parameters
Detailed Photos
ROTATION DIRECTION (CAN CHANGE)
Packaging & Shipping
|
Package Material
|
Wooden Box or Carton |
|
Package Detail
|
1piece or 5 pieces per carton package or wooden carton |
|
Delivery Way
|
Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement |
Product Application
Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
Different Type of Product
Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.
B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts.
C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts.
FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.
Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.
Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Color: | Fixed |
|---|---|
| Customized: | Customized |
| Standard: | National |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|

Can you provide insights into the importance of proper installation and alignment of pitch drives?
The proper installation and alignment of pitch drives are of utmost importance for their optimal performance, reliability, and longevity. Here’s a detailed explanation of the significance of proper installation and alignment:
- Optimal Performance: Proper installation and alignment ensure that pitch drives operate within their intended specifications, maximizing their performance. Accurate alignment of components, such as motor, gearbox, and blades, ensures efficient power transmission and minimizes energy losses. Proper installation also includes the correct mounting of sensors, actuators, and control systems, enabling accurate feedback and precise control of pitch adjustments. With optimal performance, pitch drives can achieve higher energy capture, improved system efficiency, and enhanced overall performance.
- Load Distribution: The correct installation and alignment of pitch drives contribute to proper load distribution across the system. Misalignment or improper installation can result in uneven loads on components, leading to premature wear, fatigue, or failure. Proper alignment ensures that loads are distributed evenly, reducing stress concentrations and extending the lifespan of critical components. It also improves the system’s ability to withstand external forces, such as wind or water loads, without compromising its structural integrity.
- Reliability and Safety: Proper installation and alignment directly impact the reliability and safety of pitch drives. Misalignment or incorrect installation can introduce operational issues, such as excessive vibrations, increased noise levels, or decreased system stability. These issues not only affect the performance and efficiency of pitch drives but also pose safety risks to personnel and equipment. Proper alignment and installation minimize these risks, ensuring reliable and safe operation of adjustable systems.
- Maintenance and Serviceability: Proper installation and alignment simplify maintenance and serviceability of pitch drives. When components are correctly aligned and installed, routine maintenance tasks, such as inspections, lubrication, or component replacements, can be performed more efficiently. In contrast, misalignment or improper installation may require additional effort, time, and resources for maintenance activities. Proper alignment and installation facilitate access to components, reduce maintenance downtime, and streamline serviceability, ultimately reducing operational costs.
- Longevity and Cost Savings: The longevity of pitch drives is influenced by their proper installation and alignment. Correct alignment reduces wear and tear on components, minimizing the risk of premature failures or breakdowns. By ensuring that the pitch drives operate within their designed parameters, proper installation and alignment contribute to their extended service life. This longevity translates into cost savings by reducing the frequency of replacements, repairs, and system downtime.
- Compliance with Manufacturer’s Guidelines: Proper installation and alignment of pitch drives are essential for complying with the manufacturer’s guidelines and specifications. Manufacturers provide specific instructions and requirements for installation, alignment, and commissioning to ensure the optimal performance and reliability of their products. Following these guidelines is crucial for warranty coverage, maintaining product integrity, and meeting safety standards.
In summary, proper installation and alignment are critical for achieving optimal performance, load distribution, reliability, and safety of pitch drives. They facilitate maintenance, improve serviceability, enhance longevity, and ensure compliance with manufacturer guidelines. Investing time and effort into proper installation and alignment practices is essential to maximize the benefits and longevity of pitch drives in adjustable systems.

What maintenance practices are recommended for pitch drives to ensure optimal functionality?
Maintenance practices play a crucial role in ensuring the optimal functionality and longevity of pitch drives. Regular maintenance helps identify and address potential issues, minimize downtime, and maximize the performance and reliability of pitch drives. Here are some recommended maintenance practices for pitch drives:
- Inspection and Cleaning: Regular visual inspections should be conducted to identify any signs of wear, damage, or contamination. The pitch drives should be cleaned to remove dirt, debris, or environmental contaminants that can affect their performance. This includes cleaning the external surfaces as well as inspecting internal components, such as bearings, seals, and electrical connections.
- Lubrication: Proper lubrication is essential for the smooth operation of pitch drives. The lubrication schedule recommended by the manufacturer should be followed, and appropriate lubricants should be used. This helps reduce friction, minimize wear, and prolong the life of moving parts, such as gears, bearings, and sliding surfaces.
- Torque and Tension Checks: Regular checks should be performed to ensure that the fasteners, bolts, and connections in the pitch drive system are properly torqued and tightened. Any loose or damaged fasteners should be addressed promptly to prevent potential issues, such as misalignment or component failure.
- Electrical System Maintenance: If the pitch drive incorporates electrical components, regular inspections and testing of the electrical system should be conducted. This includes checking the wiring integrity, insulation, and connections, as well as verifying the performance of sensors, actuators, and control systems. Any abnormalities or malfunctions should be addressed promptly to maintain the electrical functionality of the pitch drives.
- Alignment and Calibration: Periodic alignment and calibration of the pitch drives are important to ensure accurate and precise pitch adjustments. Misalignment can lead to improper load distribution, increased wear, or reduced performance. The alignment and calibration procedures recommended by the manufacturer should be followed to maintain the optimal functionality of the pitch drives.
- Condition Monitoring: Implementing condition monitoring techniques, such as vibration analysis, thermal imaging, or oil analysis, can help detect early signs of potential issues in pitch drives. By monitoring key parameters and analyzing trends, maintenance personnel can identify abnormal behavior or degradation in components, allowing for proactive maintenance actions to be taken before major failures occur.
- Record Keeping and Documentation: Maintaining detailed records of maintenance activities, inspections, repairs, and component replacements is essential. This documentation helps track the maintenance history, identify recurring issues, and ensure that maintenance tasks are performed at appropriate intervals. It also aids in warranty claims, troubleshooting, and future maintenance planning.
It’s important to note that maintenance practices may vary depending on the specific type of pitch drive, manufacturer’s recommendations, and operating conditions. Following the manufacturer’s guidelines, consulting maintenance manuals, and seeking professional assistance when needed are essential for implementing the most appropriate maintenance practices for the specific pitch drive system.
By implementing regular maintenance practices, pitch drives can operate optimally, minimize the risk of unexpected failures, and contribute to the overall efficiency, performance, and reliability of the machinery or systems they are a part of.

Can you explain the primary functions and roles of pitch drives in specific applications?
Pitch drives play crucial roles in specific applications where precise control over the pitch angle of rotating components is required. The primary functions and roles of pitch drives vary depending on the application context. Here’s a detailed explanation of their primary functions and roles in specific applications:
In specific applications, pitch drives serve the following functions:
- Aircraft Propellers: In aircraft propellers, pitch drives are primarily responsible for adjusting the pitch angle of the propeller blades. The main function is to control the thrust generated by the propeller. By changing the pitch angle, the propeller can adapt to different flight conditions, such as takeoff, climb, cruise, or descent. The pitch drive allows pilots or automated control systems to optimize the propeller’s performance and efficiency based on the aircraft’s speed, altitude, and desired thrust.
- Wind Turbines: Pitch drives are essential components in wind turbines as they control the pitch angle of the turbine blades. The primary function is to regulate the aerodynamic performance of the blades to capture maximum wind energy. By adjusting the pitch angle, wind turbines can optimize power generation in varying wind conditions. The pitch drive system enables individual or collective blade pitch adjustment, ensuring efficient operation and protection against excessive wind speeds or storms.
- Marine Propulsion Systems: Pitch drives play a significant role in marine propulsion systems, such as ship propellers or watercraft thrusters. The primary function is to control the pitch angle of the propeller blades to optimize thrust and maneuverability. By adjusting the pitch angle, marine vessels can adapt to different operating conditions, including speed, load, and maneuvering requirements. Pitch drives enable dynamic control of the propeller pitch angle, allowing vessels to achieve efficient propulsion and precise maneuvering capabilities.
- Industrial Machinery: In industrial machinery applications, pitch drives are employed to control the pitch angle of rotating components like fan blades, impellers, or mixing blades. The primary function is to optimize the performance, efficiency, and flow characteristics of the machinery. By adjusting the pitch angle, the pitch drive system enables the machinery to adapt to varying process conditions, such as airflow, fluid dynamics, or mixing requirements. This ensures that the machinery operates at its optimal performance level, delivering desired outcomes in industrial processes.
The roles of pitch drives in specific applications can be summarized as:
- Enabling precise control over the pitch angle of rotating components
- Optimizing thrust, power generation, or propulsion efficiency
- Adapting to changing operational conditions or environmental factors
- Enhancing maneuverability and control in aircraft, wind turbines, and marine vessels
- Improving performance, efficiency, and flow characteristics in industrial machinery
Overall, pitch drives play critical functions and roles in specific applications, allowing for precise control of the pitch angle and optimization of performance in aircraft, wind turbines, marine propulsion systems, and industrial machinery.


editor by CX 2024-04-03
China Professional ZD Vertical Type High-Precision Large Output Torque Machine Motor Planetary Gearbox planetary gearbox efficiency
Product Description
Model Selection
ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.
• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.
• Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
• On Your Need
We can modify standard products or customize them to meet your specific needs.
Product Parameters
Type Of RV Reducer
Application Of RV Reeducer
Precision Cycloidal Gearbox is widely used in industrial machinery fields such as machine tool, robot arm, industrial robot, die-casting feeding machine, manipulator for punching machine, AGV driver, bottle-making machine, UV Printer and etc.
Other Products
Company Profile
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Application: | Motor, Machinery |
|---|---|
| Hardness: | Hardened Tooth Surface |
| Installation: | Vertical Type |
| Layout: | Coaxial |
| Gear Shape: | Conical – Cylindrical Gear |
| Step: | Three-Step |
| Customization: |
Available
| Customized Request |
|---|

How to Select a Planetary Gearbox for Your Applications
You can select the most suitable Planetary Gearbox for your applications after carefully checking the various features. You should also consider secondary features like noise level, corrosion resistance, construction, price, delivery time and service. You should also check if the constructor is available across the world, because some constructors operate faster than others. Some constructors even respond to your requests on the same day, while others deliver each planetary gearbox even if they are out of stock.
CZPT gearbox
An CZPT planetary gearbox is a high-quality, compact, and lightweight gearbox that distributes loads over several gears. The planetary gearbox has a polymer case that ensures quiet operation. The company is committed to the circular economy, investing in chemical recycling and promoting the use of recycled materials wherever possible. For more information, visit CZPT’s website or contact an CZPT expert today.
A planetary gearbox contains a sun gear, which is known as the input gear. The other gears are called planets, and these are mounted on a carrier, which is connected to an output shaft. A planetary gearbox is characterized by its high reduction ratios, energy savings, and compact design. It offers superior durability and trouble-free service. Whether you need a large or small planetary gearbox, you can find one to suit your needs.
The Standard series planetary gearboxes are a cost-effective alternative to premium series gearboxes. These gearboxes are suitable for applications requiring only mild backlash or with low IP65 protection. ABB positioners feature seven different gear unit variants, allowing for standardized mounting and stranded wire connections. The drygear(r) strain wave gear has a stranded wire connector and is available with a three-year warranty.
A planetary gearbox can be used for various applications, from lifting goods to loading and unloading products in a factory. The company has a wide product range for different applications, including plastic machinery and machine tools, pick-and-place robots, mill drives, and wind turbines. It can also be used to operate robot gripper systems. Its high-quality planetary gears are designed to last for many years, making it an ideal solution for many industries.
CZPT
A planetary gearbox is an essential component of many transport systems. These devices work by aligning the output and input shafts. The Reggiana planetary gearbox 2000 series includes bevel stages and linear variants. The company offers modularity and flexibility with output configurations in ten different gear sizes. Each planetary gearbox can also be customized to meet the specific needs of a specific application.
CZPT is the Australian branch of CZPT, a leading global manufacturer of planetary gearboxes. CZPT is located in Carrum Downs, south east of Melbourne, and is one of the leading suppliers of planetary reduction gears, hydraulic failsafe brakes, and wheel drives. The company aims to provide high-quality, durable products that can be used in a variety of applications.
A CZPT Plus Series Gear is designed to maximize flexibility in a variety of applications. The gearbox’s modular design allows for endless scalability. The CZPT Plus Series Gear is commonly used in mining operations, and is known for its raw output capabilities and low maintenance design. It is made with high-quality materials, and it is also available in multiple sizes for customized applications.
The multi-stage planetary gearbox can combine individual ratios to increase the overall multiplicative factor. The planetary gears may also be combined to increase the transmittable torque. The output shaft and drive shaft may rotate in opposite directions, or they can be fixed so the gearbox can function in either direction. If the ring gear is fixed, planetary gearboxes can be realized as multi-stage.
CZPT
The CZPT Planetary Gearbox is the perfect combination of compact size and high efficiency in power transmission. The compact design allows this gearbox to run silently while still delivering high power density and transmission efficiency. The CZPT Planetary Gearbox has several advantages. Unlike conventional planetary gearboxes, CZPT’s planetary gearbox features high power density, low torque, and optimum transmission efficiency.
CZPT’s products have been used in a variety of applications for many years, proving their reliability and quality. These products are renowned in the world for their reliability and quality. CZPT’s planetary gearboxes are backed by a five-year warranty. These features help customers choose a planetary gearbox that meets their needs and stays in top shape for years to come. But how do you test a planetary gearbox?
Figure 17 shows the response of a planetary gearbox to vibration. The maximum displacement in xg direction at a 50% crack level is shown by the dashed line. The signal in xg direction is called the xsignal. Moreover, the CZPT Planetary Gearbox’s vibration response is highly sensitive to the location of the bearings. For this reason, dynamic modeling of a planetary gearbox should consider bearing clearance.
CZPT’s hollow cup motor drive system features high reliability and low power consumption. The gearbox is compatible with industries with high quality standards, as there is no cogging torque. Its compact size and low electromagnetic noise make it ideal for a variety of applications. For industries with high product quality requirements, the CZPT Hollow Cup Motor Drive System is an excellent choice. It is also designed for vertical installation. You can even buy multiple CZPT products to meet your specific needs.
CZPT
With its PL series planetary gearboxes, CZPT has expanded its product portfolio to include more types of drive solutions. CZPT is one of the few companies to have won the Schneider Electric Supplier Award for Quality. In addition, its high-quality planetary gearboxes are highly customizable, allowing designers to customize each gearbox for the application at hand. Whether it is a geared pump or a stepper motor, CZPT’s PLE planetary gearboxes are built to meet the exact specifications of the application at hand.
The flange-mounted version of the planetary gearbox is comparable to its planetary counterpart. Using a flange-mounted planetary gearbox allows for a smaller, more compact design. This model also features a large-diameter output shaft, which helps achieve a higher level of torsional stiffness. This makes CZPT flange gearboxes particularly useful for applications where the direction of motion can change frequently. These gearboxes can be used with a wide variety of belts.
The PLQE 60-mm gearbox is used in Outrider’s single-stage design. Its gear ratio is 5:1, while its dual-stage version has a 15:1 gear ratio. Both gearboxes have identical mounting configurations, but the two-stage version is slightly longer.
The PLN series of planetary gearheads from CZPT are the standard for high-precision applications. They’re compatible with all major motor brands and sizes, and the company’s adapter kits are available to fit almost any motor. This makes CZPT gearheads one of the easiest to integrate into a complex machine. They’re also extremely easy to install, with the same torque as their corresponding spur gears.
CZPT’s
If you are looking for an efficient solution for screw press applications, consider using CZPT’s 300M Planetary Gearbox. It has high axial and radial load capacities, compact design, high torque output, and torque arm. The 300M planetary gearbox is compatible with a variety of screw presses, including hydraulic press systems and digester systems. Its Torque control and direct coupling feature makes it easy to install.
CZPT’s small planetary gearboxes have an output torque of 20:1 from individual ratios of 5:1 and 4:1. They run silently and deliver maximum transmission efficiency. The planetary gears are mounted on a ring that is fixed around the center sun gear. The ring acts as an output torque converter for the next planet stage. This planetary gearbox has multiple stages and a maximum ratio of 20:1 can be created from individual ratios of 5:1 and 4:1.
CZPT Motor is an innovator in the design and manufacture of miniature motors for industrial robots. Its offerings include brushless DC and brushed DC motors, as well as planetary gearboxes, encoders, and brakes. CZPT’s products have a variety of uses in robotics, intelligent appliances, medical equipment, communication, and industrial automation. The company is also committed to providing custom designs based on customer specifications.
Another advantage of a planetary gearbox is its high power transmission efficiency. It is capable of approximately 3% per stage, allowing it to transmit more torque than a conventional single-stage gearbox. Planetary gearboxes are also compact and have a high torque-to-weight ratio. CZPT’s Planetary Gearbox is the best choice for many applications. This gearbox offers the highest efficiency and is ideal for small-scale production.


editor by CX 2024-04-02
China best Economic Two Stage Px86 NEMA34 Stepper Motor 90 Degree Gearbox with Great quality
Product Description
Economic Two Stage Px86 NEMA34 Stepper Motor 90 Degree Gearbox
-Planetary gearbox is a widely used industrial product, which can reduce the speed of motor and increase the output torque. Planetary reducer can be used as supporting parts in lifting, excavation, transportation, construction and other industries.
-Single stage :10,12,16,20,24,30,36
-Net Weight: 2.4kg
-Torque
| Ratio | 10,12,16,20,24,30,36 |
| Rate Torque N.m | 50 N.m |
| Max Torque N.m | 80 N.m |
-Product picture
-Datasheet
-Company introduction
FOCUS is an automation & drive focused global company, providing global customers with control, display, drive and system solutions & other related products and services, under the support of its excellent electrical and electronic technology as well as strong control technical force.
We provide and develop perfect products and solutions according to different requirement of the industry. Our products have been used and applied successfully in packing, printing, textiles, plastic injection, elevator, machine tool, robot,wood cutting, stone carving, ceramic, glass, paper making industry, crane, fan & pump, new energy resources etc.
FOCUS, your professional electrical partner !
-Payment & Package & Delivery
1,Payment
( T/T , Western union, Paypal , L/C and so on )
2,Pakcage
( Small gearbox use carton package, Big gearbox use wooden box package )
3,Delivery
( By International Express, By Air , By Sea )
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Application: | Motor, Machinery, Agricultural Machinery |
|---|---|
| Hardness: | Hardened Tooth Surface |
| Installation: | Vertical Type |
| Layout: | Coaxial |
| Gear Shape: | Conical – Cylindrical Gear |
| Step: | Single-Step |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
| Customized Request |
|---|

Planetary Gearbox Components
The basic components of a planetary gearset are an input, output, and stationary position. Different types of planetary gearboxes will have different output ratios and torques. A leading company for planetary gearbox design, CZPT, provides the necessary components. These components can vary in both male and female shafts and come with a variety of modular options. Here are a few things to consider about each component.
CFHK Series
The CFHK Series is a multistage planetary gearbox that contains multiple planetary gears. The multiple teeth of each planetary gear mesh simultaneously during operation to increase the transmittable torque. The gears are case hardened and ground, and the ratios of the planetary gears are integers. They were first functionally described by Leonardo da Vinci in 1490. Today, the CFHK Series is a favorite among automotive engineers and manufacturers.
The CH Series offers high accuracy with a compact design and case hardened, hypoid, and helical gearing. These gearboxes are also available in the CFXR series, with low backlash and friction. These planetary gearboxes are designed to provide high torque and high precision in a variety of applications. In addition, the CFXR series features 100% helical gearing and low backlash.
The CFHK Series features a sun gear that drives the next stage. These gears can be put in series or serially in the same housing. In some cases, the output shaft of the first stage becomes the input shaft of the second stage. In addition, ring gears are also used as structural parts of smaller gearboxes. An example of a planetary gearbox is the pencil sharpener mechanism. The pencil is placed on an axis that is set on a sun gear. The sun gear drives the next planet stage.
A planetary gear unit’s gear ratio is determined by the number of teeth in the sun gear and ring gear. The smaller the sun gear, the smaller the ratio between the sun gear and planet gears. The largest gear ratio in a planetary gear unit is 10:1. A higher number of teeth increases the transmission ratio. In order to maximize torque, the planetary gears must be rearranged. A smaller sun gear will have higher torque than a large ring gear.
CFX Series
The HPN Harmonic Planetary(r) Series planetary gearboxes offer a low-cost solution with high-performance and high-reliability. This modular design is easy to install and requires very little maintenance. Its planetary design and full complement of needle rollers allow for extended life and quiet operation. In addition, the HPN Harmonic Planetary(r) Series is available in a range of sizes.
The compact size and high-speed design of planetary gearboxes results in excellent heat dissipation. However, high-speed or sustained performance applications may require lubricants. A planetary gearbox will have smaller minimum steps to minimize noise and vibration. Planetary gears will give you the highest level of efficiency while minimizing noise. As a result, they can provide high-quality 3D prints.
A planetary gear train is composed of a ring gear and planet gears, each supported by a carrier. A ring gear is pink, while the sun gear is red. The sun gear and carrier rotate around each other at a 45-degree angle. This is also known as an epicyclic gear. Planetary gearboxes are often found in space-constrained applications. The CFX Series features a compact design and excellent performance.
The CFX Series features a robust design that is easy to install. Its compact size makes installation of planetary gearboxes easier and faster. They are available in three different configurations for continuous, intermittent, and counter-clockwise operation. The CFX Series offers the perfect solution for your accelerating needs. They’re a great solution for any automotive or industrial application. You can easily configure the CFX Series to meet your specific requirements.
CAP Series
The Candy Controls CAP Series is a new generation of compact, precision planetary gearboxes that combine high torques with low backlash and exceptional wear resistance. This rotary flange planetary gearbox is ideal for a variety of industrial, mining and marine applications. Its modular construction enables users to easily mount different stages, hydraulic or electric motors, and different types of gears. Its CPH Series features an extremely rigid alloy steel housing, carburized gears, and induction hardened gears.
The CAP Series utilizes multiple planetary gears for high torque transmission. The number of planetary gears is not fixed, but most planetary gearboxes utilize at least three. The larger the number of planetary gears, the higher the transmittable torque. A planetary gearbox is composed of multiple planetary gears with a meshing action that occurs simultaneously during operation. The result is a higher efficiency and a smoother, quieter operation than a conventional gearbox.
The VersaPlanetary range features modular design for easy installation. This system includes mounting plates for typical FIRST (r) Robotics Competition motors. The mounting plates are designed to fit each motor. These planetary gearboxes are compatible with various types of motors, from small electric motors to large, heavy duty ones. They are also compatible with a variety of mounting systems, including CIM motors.
CAPK Series
The CZPT APK Series is a high precision, rotary flange style planetary gearbox. Its case hardened and ground gears are designed to provide excellent wear resistance, low backlash, and excellent precision. The CAPK Series offers high axial and moment load capacities in a compact housing. CZPT is the world leader in the production of planetary gearboxes. The CAPK Series features an array of high-quality, innovative features.
CZPT SMART Lubrication technology is used to keep the gears well-lubricated and reduce noise and vibration. The planetary gearbox’s 3-gear design is ideal for DIY CNC robotics. This series has a long history of quality, and CZPT uses only the best components. The CZPT 3:1 High Precision Planetary Gearbox is an excellent choice for CNC Robotics and other applications.
A multi-stage planetary gearbox combines individual ratios for a greater number of ratios. Additional planetary gears increase the transmittable torque. The direction of the output and drive shaft are always identical. The CAPK Series features a high-quality, durable construction. They are made from stainless steel and offer a long-term warranty. They are the best choice for industrial and commercial applications. While planetary gears are more expensive, they are highly efficient.
CFH Series
The Candy CFH Series planetary gearboxes offer the benefits of a modular design and a low backlash. They offer a variety of size options and excellent durability. This planetary gearbox is compact and wear resistant. The CFH Series planetary gearbox has a carburized, induction hardened gears and a rigid alloy steel housing. Its low backlash and precision make it an excellent choice for industrial applications.
The CFH Series planetary gearbox is a highly efficient, high-speed helical gear. The compact design of this gearbox results in high heat dissipation and low mass inertia. Planet carrier bearings experience significant lateral forces from the transmission of torque. As a result, radial and axial forces oppose each other. The result is that the torque is distributed over three gears, reducing noise, vibration, and wear.
The planetary gearbox has three main components: a sun gear (also known as the input gear), a ring gear, and two planet gears. These are connected by a carrier that rotates about a 45-degree clockwise axis. The CFH Series of gears is available in triple and double stages. They can also be used in electric motors. As a result, the CFH Series is highly versatile.
The CFH Series of planetary gearboxes can be found in all kinds of applications, including automotive transmissions. Their compact design and high-performance performance make them a popular choice for space-constrained applications. This gearbox has several benefits and is a great alternative to a conventional helical gearbox. These gearboxes are highly effective for reducing torque and speed, and are compact enough to fit in most applications.
CZPT
If you need a high-quality planetary gearbox, the CZPT Planetary Series is the right choice. This Italian company designs and manufactures gearboxes in its San Polo d’Enza, Italy, facility with 11 branch offices and three production facilities. The company is attempting to replicate the success of the Italian Super Car industry, which has gained global recognition. The company provides a range of gearboxes for use in heavy industry, agriculture, offshore, aerial and marine work.
With over 40 years of experience, CZPT manufactures a wide range of high-quality gearboxes. From bevel-helical units to Helical units, wheel gears and negative brakes, the company has been manufacturing quality components for many industries. CZPT is a trusted Australian distributor of CZPT gear components. The company is dedicated to providing the best planetary gears for every industry.
If your CZPT Planetary gearbox is malfunctioning, you can have it repaired quickly and easily. The company uses quality materials and a variety of sizes and output ratios to cater to the most demanding applications. In addition, you can customize your gearbox to suit your specific needs. CZPT Planetary Gearboxes are highly versatile and customizable, offering infinite scalability.


editor by CX 2024-04-02
China Good quality H B Right Angle Helical Bevel Gear Box 90 Degree Transmission Gearbox Type for Sliding Gate with Great quality
Product Description
H B Series Industrial GearBox
Feature:
-
Realized parallel shaft,right-angle shaft modes and horizontal,vertical mounting modes. Using less component parts.
-
Applying advanced grinding process which improved the stability and the efficiency of transmit power with lower noise.
-
Input mode: motor connected flange, shaft input
-
Output mode:solid shaft with flat key,hollow shaft with flat key,hollow shaft with shrink disk,hollow shaft with spline connection, CZPT shaft with spline connection, CZPT shaft with flange.
-
Mounting mode:vertical, horizontal, swing base-mounted, torque-arm-mounted.
-
Ratio range:1.23~450. It can be higher when combining with K&R series reducer.
H & B SERIES
Transmission stage B2 (ratio from 5~18) B3 (ratio from 12.5~90) B4 (ratio from 80~400) Transmission stage H1 (ratio from 1.25~5.6) H2 (ratio from 6.3~28) H3 (ratio from 22.4~112) H4 (ratio from 100~450) Housing material HT250 high-strength cast iron Housing hardness HBS190-240 Gear material 20CrMnTi alloy steel Surface hardness of gears HRC58°~62 ° Gear core hardness HRC33~40 Input / Output shaft material 42CrMo alloy steel Input / Output shaft hardness HRC25~30 Machining precision of gears accurate grinding, 6~5 Grade Lubricating oil GB L-CKC220-460, Shell Omala220-460 Heat treatment tempering, cementiting, quenching, etc. Efficiency 92%~98% (depends on the transmission stage) Noise (MAX) 60~68dB Temp. rise (MAX) 40ºC Temp. rise (Oil)(MAX) 50ºC Vibration ≤20µm Backlash ≤20Arcmin Brand of bearings China Top brand HRB,LYC,ZWZ or other brands requested, NSK….. Brand of oil seal NAK— ZheJiang or other brands requested
Q: Are you trading company or manufacturer?
A: We are factory.
Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock.
Q: Can we buy 1 pc of each item for quality testing?
A: Yes, we are glad to accept trial order for quality testing.
Q:How to choose a gearbox which meets your requirement?
A:You can refer to our catalogue to choose the gearbox or we can help to choose when you provide
the technical information of required output torque, output speed and motor parameter etc.
Q: What information shall we give before placing a purchase order?
A:a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor informationetc.
b) Housing color.
c) Purchase quantity.
d) Other special requirements.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Application: | Motor, Machinery, Marine, Agricultural Machinery |
|---|---|
| Hardness: | Hardened Tooth Surface |
| Installation: | Horizontal Type |
| Layout: | Coaxial |
| Gear Shape: | Cylindrical Gear |
| Step: | Double-Step |
| Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
|---|

Planetary Gearbox
This article will explore the design and applications of a planetary gearbox. The reduction ratio of a planetary gearbox is dependent on the number of teeth in the gears. The ratios of planetary gearboxes are usually lower than those of conventional mechanical transmissions, which are mainly used to drive engines and generators. They are often the best choice for heavy-duty applications. The following are some of the advantages of planetary gearboxes.
planetary gearboxes
Planetary gearboxes work on a similar principle to solar systems. They rotate around a center gear called the sun gear, and two or more outer gears, called planet gears, are connected by a carrier. These gears then drive an output shaft. The arrangement of planet gears is similar to that of the Milky Way’s ring of planets. This arrangement produces the best torque density and stiffness for a gearbox.
As a compact alternative to normal pinion-and-gear reducers, planetary gearing offers many advantages. These characteristics make planetary gearing ideal for a variety of applications, including compactness and low weight. The efficiency of planetary gearing is enhanced by the fact that ninety percent of the input energy is transferred to the output. The gearboxes also have low noise and high torque density. Additionally, their design offers better load distribution, which contributes to a longer service life.
Planetary gears require lubrication. Because they have a smaller footprint than conventional gears, they dissipate heat well. In fact, lubrication can even lower vibration and noise. It’s also important to keep the gears properly lubricated to prevent the wear and tear that comes with use. The lubrication in planetary gears also helps keep them operating properly and reduces wear and tear on the gears.
A planetary gearbox uses multiple planetary parts to achieve the reduction goal. Each gear has an output shaft and a sun gear located in the center. The ring gear is fixed to the machine, while the sun gear is attached to a clamping system. The outer gears are connected to the carrier, and each planetary gear is held together by rings. This arrangement allows the planetary gear to be symmetrical with respect to the input shaft.
The gear ratio of a planetary gearbox is defined by the sun gear’s number of teeth. As the sun gear gets smaller, the ratio of the gear will increase. The ratio range of planetary gears ranges from 3:1 to ten to one. Eventually, however, the sun gear becomes too small, and the torque will fall significantly. The higher the ratio, the less torque the gears can transmit. So, planetary gears are often referred to as “planetary” gears.
Their design
The basic design of a Planetary Gearbox is quite simple. It consists of three interconnecting links, each of which has its own torque. The ring gear is fixed to the frame 0 at O, and the other two are fixed to each other at A and B. The ring gear, meanwhile, is attached to the planet arm 3 at O. All three parts are connected by joints. A free-body diagram is shown in Figure 9.
During the development process, the design team will divide the power to each individual planet into its respective power paths. This distribution will be based on the meshing condition of all gears in the system. Then, the design team will proceed to determine the loads on individual gear meshes. Using this method, it is possible to determine the loads on individual gear meshes and the shape of ring gear housing.
Planetary Gearboxes are made of three gear types. The sun gear is the center, which is connected to the other two gears by an internal tooth ring gear. The planet pinions are arranged in a carrier assembly that sets their spacing. The carrier also incorporates an output shaft. The three components in a Planetary Gearbox mesh with each other, and they rotate together as one. Depending on the application, they may rotate at different speeds or at different times.
The planetary gearbox’s design is unique. In a planetary gearbox, the input gear rotates around the central gear, while the outer gears are arranged around the sun gear. In addition, the ring gear holds the structure together. A carrier connects the outer gears to the output shaft. Ultimately, this gear system transmits high torque. This type of gearbox is ideal for high-speed operations.
The basic design of a Planetary Gearbox consists of multiple contacts that must mesh with each other. A single planet has an integer number of teeth, while the ring has a non-integer number. The teeth of the planets must mesh with each other, as well as the sun. The tooth counts, as well as the planet spacing, play a role in the design. A planetary gearbox must have an integer number of teeth to function properly.
Applications
In addition to the above-mentioned applications, planetary gearing is also used in machine tools, plastic machinery, derrick and dock cranes, and material handling equipments. Further, its application is found in dredging equipment, road-making machinery, sugar crystallizers, and mill drives. While its versatility and efficiency makes it a desirable choice for many industries, its complicated structure and construction make it a complex component.
Among the many benefits of using a planetary gearbox, the ability to transmit greater torque into a controlled space makes it a popular choice for many industries. Moreover, adding additional planet gears increases the torque density. This makes planetary gears suitable for applications requiring high torque. They are also used in electric screwdrivers and turbine engines. However, they are not used in everything. Some of the more common applications are discussed below:
One of the most important features of planetary gearboxes is their compact footprint. They are able to transmit torque while at the same time reducing noise and vibration. In addition to this, they are able to achieve a high speed without sacrificing high-quality performance. The compact footprint of these gears also allows them to be used in high-speed applications. In some cases, a planetary gearbox has sliding sections. Some of these sections are lubricated with oil, while others may require a synthetic gel. Despite these unique features, planetary gears have become common in many industries.
Planetary gears are composed of three components. The sun gear is the input gear, whereas the planet gears are the output gears. They are connected by a carrier. The carrier connects the input shaft with the output shaft. A planetary gearbox can be designed for various requirements, and the type you use will depend on the needs of your application. Its design and performance must meet your application’s needs.
The ratios of planetary gears vary depending on the number of planets. The smaller the sun gear, the greater the ratio. When planetary stages are used alone, the ratio range is 3:1 to 10:1. Higher ratios can be obtained by connecting several planetary stages together in the same ring gear. This method is known as a multi-stage gearbox. However, it can only be used in large gearboxes.
Maintenance
The main component of a planetary gearbox is the planetary gear. It requires regular maintenance and cleaning to remain in top shape. Demand for a longer life span protects all other components of the gearbox. This article will discuss the maintenance and cleaning procedures for planetary gears. After reading this article, you should know how to maintain your planetary gearbox properly. Hopefully, you can enjoy a longer life with your gearbox.
Firstly, it is important to know how to properly lubricate a planetary gearbox. The lubricant is essential as gears that operate at high speeds are subject to high levels of heat and friction. The housing of the planetary gearbox should be constructed to allow the heat to dissipate. The recommended oil is synthetic, and it should be filled between 30 and 50 percent. The lubricant should be changed at least every six months or as needed.
While it may seem unnecessary to replace a planetary gearbox, regular servicing will help it last a long time. A regular inspection will identify a problem and the appropriate repairs are needed. Once the planetary gearbox is full, it will plug with gear oil. To avoid this problem, consider getting the unit repaired instead of replacing the gearbox. This can save you a lot of money over a new planetary gearbox.
Proper lubrication is essential for a long life of your planetary gearbox. Oil change frequency should be based on oil temperature and operating speed. Oil at higher temperatures should be changed more frequently because it loses its molecular structure and cannot form a protective film. After this, oil filter maintenance should be performed every few months. Lastly, the gearbox oil needs to be checked regularly and replaced when necessary.


editor by CX 2024-03-30
China Custom Worm Gearbox / Double Enveloping Worm Reducer / Combination Reducer application of planetary gearbox
Product Description
Worm Gearbox / Double Enveloping Worm Reducer / Combination Reducer
Product Description
Characteristic of Sgr High Efficiency, Low Noice Cone Worm Series Worm Gearbox : In a Worm Gearbox, Worm Reduction Gear Box, Worm Speed Reducer and Gear Motor Manufacturer, three to 11 gear teeth are typically in contact with the worm, depending CZPT the ratio. The increased number of driven gear teeth that are in contact with the worm significantly increases torque capacity also raises shock load resistance. In addition to increasing the number of driven gear teeth in contact with the worm, Worm Gearbox, Worm Reduction Gear Box, Worm Speed Reducer and Gear Motor Manufacturer also increases the contact area on each gear tooth. The actual areas of instantaneous contact between the worm threads and the driven gear tooth are lines. These lines of contact move across the face of the gear tooth as it progresses through its total time of mesh with the worm. The lines of contact in double-enveloping worm gearing are configured to increase the power transmission capability and reduce the stress on each gear tooth.
Datasheet on CUW double enveloping worm gear reducer :
| Model | ShaftDia. (mm) | Center Height (CUW) | (CUW) Output shaft Dia. | Power | Ratio | Permitted Torque | Weight |
| (CUW) input Solid(h6) | (mm) | (mm) | (kw) | (Nm) | (KGS) | ||
| 100 | 28 | 190 | 48 | 1.41~11.5 | 10 .25~ 62 | 683-1094 | 42 |
| 125 | 32 | 225 | 55 | 2.42~19.7 | 10 .25 ~ 62 | 1170~2221 | 65 |
| 140 | 38 | 255 | 65 | 3.94~25.9 | 10 .25 ~ 62 | 1555 ~ 3473 | 85 |
| 160 | 42 | 290 | 70 | 4.39~35.7 | 10 .25 ~ 62 | 2143 ~4212 | 120 |
| 180 | 48 | 320 | 80 | 5.83~47.5 | 10 .25 ~ 62 | 2812 ~ 5387 | 170 |
| 200 | 55 | 350 | 90 | 7.52 ~61.2 | 10 .25 ~ 62 | 3624 ~6859 | 220 |
| 225 | 60 | 390 | 100 | 9.9~81.4 | 10 .25 ~ 62 | 4872 ~ 9224 | 290 |
| 250 | 65 | 430 | 110 | 12.9 ~105 | 10 .25~ 62 | 6284~11892 | 380 |
| 280 | 70 | 480 | 120 | 16.9 ~ 138 | 10 .25 ~ 62 | 8347 ~ 15820 | 520 |
| 315 | 75 | 530 | 140 | 22.5 ~183 | 10 .25 ~ 62 | 11068~ 19450 | 700 |
| 355 | 80 | 595 | 150 | 30~245 | 10 .25 ~ 62 | 14818 ~28014 | 1030 |
| 400 | 90 | 660 | 170 | 32.1 ~261 | 10 .25 ~ 62 | 15786~29918 | 1400 |
| 450 | 100 | 740 | 190 | 42.6 ~347 | 10 .25 ~ 62 | 2571~39881 | 1980 |
| 500 | 110 | 815 | 210 | 54.9 ~ 448 | 10 .25 ~ 62 | 27097~51180 | 2700 |
Double-enveloping worm gearbox figure :
(Click on picture for more information)
Packaging & Shipping
Package :
SGR gearbox use standard wood case per gear motor | gear unit.
Shipping :
According to Customer requirement, we delivery products by different transport, Sea shipping, Air Transportation / Express or Truck transportation etc.
You Appoint, We Service!
Our Services
With all our activities DNV-ISO 9001, SGS -certified, we stand for top-quality service. Entrusting your gearboxes to the care of our Services.
Help protect your gearbox from wear and grinding, SGR gearbox converts torque reliably and efficiently.
We customize our CZPT planetary gear units, double enveloping worm gearbox, helical gear motor, modular design helical gear unit, worm gearbox, cycloidal gearbox etc to fit your application and meet your needs.
These features enable a reliable and safe service life of over 200 000 operational hours.
Our customers have been placing their trust in CZPT gear units since 1997. More than 500 000 gear units of our gearbox are in use reliably around the world, in many cases under very harsh conditions.
Our Honour and Patent :
ABOUT US:
ZheJiang CZPT Heavy Industry Machinery Co., Ltd.(formerly known as ZheJiang CZPT Reducer Co., Ltd. ) (sgrgear ) has accumulated rich original designing & manufacturing experience after being founded in 1996. CZPT brand planetary gear reducer has won honor of “Science and Technology Advancement Prize” awarded by the National Speed Reducer & Variator Industry Association.
We produce planetary gear units, planar double-enveloping worm gear speed reducers (cone worm gear reducer), helical-bevel gear motors, worm gear reducers, helical worm gear motors, helical gear motors and many other types of gear units. CZPT gear motors and gear units have given satisfactory performance in different industrial applications, including metallurgy, mineral, architecture, shipbuilding, petroleum combination, aviation space-flight, lift routeing, textile mechanic, cement, pharmaceuticals, pumps, general mechanic and other domain.
With the advantage of high quality & competitive price, CZPT gear motor and gear units are widely welcomed in the domestic market and exported to Southeast Asia, Middle Asia, North America and European countries etc.
With the excellent testing program, CZPT company is always keeping up with the most advanced technology in the world. We have already acquired DNV-ISO9001: 2008 certificate,SGS, CE etc and a patent on CZPT branded gearbox.
We have adopted advanced CAD and CIMS in design & manufacture, which help our engineers develop 3 – 5 series of new efficient products each year. All staff in sales & service department are well trained termly, thus you will be always warmly welcomed and understood by our company.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Application: | Motor, Machinery, Marine, Agricultural Machinery, Industry |
|---|---|
| Function: | Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction |
| Layout: | 90 Degree Angle |
| Hardness: | Hardened |
| Installation: | Horizontal Type |
| Step: | Single-Step |
| Customization: |
Available
| Customized Request |
|---|

Planetary Gearbox Basics
If you’re in the market for a new Planetary Gearbox, you’ve come to the right place. There’s more to these mechanical wonders than just their name. Learn about Spur gears, helical gears, and various sizes. After you’ve read this article, you’ll know exactly what to look for when shopping for a new one. And you’ll also be able to avoid common mistakes made by amateur mechanics.
Wheel drive planetary gearboxes
Planetary gearboxes have numerous benefits over conventional gearboxes. Their compact design is advantageous for servo functions. Their lubrication is a key feature to maintain smooth operation and avoid damage to the gears. Some manufactures use CZPT to ensure proper functioning. These gearboxes have nearly three times the torque of traditional gearboxes while remaining compact and low in mass.
The planetary gears are made of three different types. Each type has an input and output shaft. The input and output shafts are usually coaxially arranged. The input and output shafts are connected to each other via a carrier. The carrier rotates with the planetary gears. The sun gear is the input gear and is typically 24 teeth in diameter. The outer gears are connected to the sun gear via rings of gears that are mounted around the sun gear.
Planetary gearboxes are also used in wheeled and tracked vehicles. They are also used in winch systems, which lift and lower loads. Typical applications include heavy machinery, such as cranes and earthmovers. Wheel drives are also widely used in municipal and agricultural vehicles, as well as material handling vehicles. The wheel drive is typically mounted directly into the wheel rim. A wheel drive may be fitted into two, three, or even four wheels.
A planetary gear set may be used in stages to provide different transmission rates. In order to choose the right gearbox for your application, consider the torque, backlash, and ratio you need. Then, consider the environment where the gearbox is used. Depending on its location, it might need to be protected from weather, water, and other elements. You can find a wide range of different sizes in the market.
Spur gears
There are two basic types of gearheads: planetary and spur gearheads. Each has its advantages and disadvantages depending on the application. This article will discuss the differences between these two types of gearheads. Spur gearheads are commonly used for transmission applications, while planetary gearheads are more widely used for motors. Spur gearheads are less expensive to produce than planetary gearheads, and they are more flexible in design.
There are many different types of spur gears. Among them, a 5:1 spur gear drive ratio means that the sun gear must rotate five times per revolution of the output carrier. The desired number of teeth is 24. In metric systems, the spur gears are referred to as mm and the moon gears as modules. Spur gears are used in many different types of applications, including automotive and agricultural machinery.
A planetary geartrain is a combination of ring and spur gears, which mesh with each other. There are two kinds of planetary geartrains: simple planetary gears and compound planetary gears. Spur gears are the most common type, with a sun gear and ring gear on either side of the sun. Simple planetary gears feature a single sun and ring gear, while compound planetary gears use multiple planets.
A planetary gearbox consists of two or more outer gears, which are arranged to rotate around the sun. The outer ring gear meshes with all of the planets in our solar system, while the sun gear rotates around the ring gear. Because of this, planetary gearboxes are very efficient even at low speeds. Their compact design makes them a desirable choice for space-constrained applications.
Helical gears
A planetary helical gearbox has two stages, each with its own input speed. In the study of planetary helical gear dynamics, the base circle radius and full-depth involute teeth are added to the ratio of each gear. The tangential position of the planets affects the dynamic amplifications and tooth forces. The tangential position error is an important factor in understanding the dynamic behaviour of helical planetary gears.
A helical gearbox has teeth oriented at an angle to the shaft, making them a better choice than spur gears. Helical gears also operate smoothly and quietly, while spur gears generate a thrust load during operation. Helical gears are also used in enclosed gear drives. They are the most common type of planetary gearbox. However, they can be expensive to produce. Whether you choose to use a helical or spur gearbox depends on the type of gearbox you need.
When choosing a planetary gear, it is important to understand the helix angle of the gear. The helix angle affects the way the planetary gears mesh, but does not change the fundamentals of planetary phasing. In each mesh, axial forces are introduced, which can either cancel or reinforce. The same applies to torques. So, if the ring gear is positioned at an angle of zero, helical gears will increase the axial forces.
The number of teeth on the planets is a variable parameter that must be considered in the design phase. Regardless of how many teeth are present, each planet must have a certain amount of tooth spacing to mesh properly with the ring or sun. The tip diameter is usually unknown in the conceptual design stage, but the pitch diameter may be used as an initial approximation. Asymmetrical helical gears may also cause undesirable noise.
Various sizes
There are several sizes and types of planetary gearboxes. The planetary gear sets feature the sun gear, the central gear, which is usually the input shaft, and the planet gears, which are the outer gears. A carrier connects the planet gears to the output shaft. The primary and secondary features of the planetary gearbox are important factors to consider. Besides these, there are other things to consider, such as the price, delivery time, and availability around the world. Some constructors are quicker than others in responding to inquiries. While others may be able to deliver every planetary gearbox out of stock, they will cost you more money.
The load share behavior of a planetary gearbox is comparable to that of a spur or a helical gearbox. Under low loads, individual gear meshes are slightly loaded, while other components have minimal deflections. In general, load sharing behaviour is affected mostly by assembly and manufacturing deviations. In this case, the elastic deflections help balance these effects. The load-sharing behavior of a planetary gearbox improves when the load increases.
Planetary gearboxes come in different sizes. The most common size is one with two or three planets. The size and type of the gears determine the transmission rate. Planetary gear sets come in stages. This gives you multiple transmission rate choices. Some companies offer small planetary gearboxes, while others offer larger ones. For those with special applications, make sure you check the torque, backlash, and ratio.
Whether the power is large or small, the planetary gearbox should be matched to the size of the drive. Some manufacturers also offer right-angle models. These designs incorporate other gear sets, such as a worm gear stage. Right-angle designs are ideal for situations where you need to vary the output torque. When determining the size of planetary gearboxes, make sure the drive shafts are lined up.
Applications
This report is designed to provide key information on the Global Applications of Planetary Gearbox Market, including the market size and forecast, competitive landscape, and market dynamics. The report also provides market estimates for the company segment and type segments, as well as end users. This report will also cover regional and country-level analysis, market share estimates, and mergers & acquisitions activity. The Global Applications of Planetary Gearbox Market report includes a detailed analysis of the key players in the market.
The most common application of a planetary gearbox is in the automobile industry, where it is used to distribute power between two wheels in a vehicle’s drive axle. In a four-wheel-drive car, this system is augmented by a centre differential. In hybrid electric vehicles, a summation gearbox combines the combustion engine with an electric motor, creating a hybrid vehicle that uses one single transmission system.
In the Global Industrial Planetary Gearbox Market, customer-specific planetary gears are commonly used for automated guided vehicles, intra-logistics, and agricultural technology. These gears allow for compact designs, even in tight spaces. A three-stage planetary gear can reach 300 Nm and support radial loads of 12 kN. For receiver systems, positioning accuracy is critical. A two-stage planetary gearbox was developed by CZPT. Its internal gear tension reduces torsional backlash, and manual controls are often used for high-quality signals.
The number of planetary gears is not fixed, but in industrial applications, the number of planetary gears is at least three. The more planetary gears a gearbox contains, the more torque it can transmit. Moreover, the multiple planetary gears mesh simultaneously during operation, which results in high efficiency and transmittable torque. There are many other advantages of a planetary gearbox, including reduced maintenance and high speed.


editor by CX 2024-03-29
China factory Traverse Head Rolling Ring Traverse Drive Box, Gp15A Traverse Rolling Ring Drives
Product Description
Product Description
Traverse head rolling ring traverse drive box, GP15A traverse rolling ring drives
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force
| Type | GP15A |
| Shaft Diameter | 15 mm |
| Number of Rolling Rings | 3 Pieces |
| Maximum Thrust(N) | 100 N |
| Weight-Bearing(KG) | 10 kg |
| Maximum Pitch(mm) | 11 mm |
| Weight(KG) | 1.2 kg |
Product Parameters
Detailed Photos
ROTATION DIRECTION (CAN CHANGE)
Packaging & Shipping
|
Package Material
|
Wooden Box or Carton |
|
Package Detail
|
1piece or 5 pieces per carton package or wooden carton |
|
Delivery Way
|
Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement |
Product Application
Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
Different Type of Product
Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.
B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts.
C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts.
FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.
Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.
Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Color: | Fixed |
|---|---|
| Customized: | Customized |
| Standard: | National |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|

How do pitch drives contribute to the adaptability and versatility of adjustable systems in various settings?
Pitch drives play a crucial role in enhancing the adaptability and versatility of adjustable systems across various settings. These drives enable precise control over the pitch angles of adjustable components, allowing them to respond dynamically to changing operating conditions. Here’s a detailed explanation of how pitch drives contribute to the adaptability and versatility of adjustable systems:
- Optimized Performance: By adjusting the pitch angles of blades, propellers, or other adjustable components, pitch drives optimize the performance of adjustable systems. In applications such as wind turbines or marine propulsion systems, pitch drives enable the system to capture maximum energy from the wind or water currents. By adjusting the pitch angles based on real-time conditions, such as wind speed or load demand, pitch drives ensure that the system operates at its peak performance, maximizing energy conversion, and overall efficiency.
- Load Control and Mitigation: Pitch drives provide load control capabilities, allowing adjustable systems to manage and mitigate excessive loads. By adjusting the pitch angles, the systems can redistribute the loads on components, reducing stress concentrations and minimizing the risk of fatigue or failure. This load control capability is particularly valuable in applications where adjustable systems operate under varying and unpredictable load conditions, such as wind turbines experiencing gusty winds or marine systems encountering wave-induced loads.
- Dynamic Response: The ability of pitch drives to adjust pitch angles in real-time enables adjustable systems to have a dynamic response to changing operating conditions. For example, in wind turbines, pitch drives can respond to sudden changes in wind speed or direction, allowing the blades to maintain optimal aerodynamic performance and prevent excessive loads. This dynamic response capability enhances the adaptability of adjustable systems, enabling them to quickly adjust and optimize their operation in response to environmental changes.
- Power Regulation: Pitch drives contribute to the adaptability of adjustable systems by enabling power regulation. By adjusting the pitch angles, the systems can control the power output or torque generation. This is particularly useful in applications such as wind turbines, where pitch drives can regulate the rotational speed of the blades to match the desired power output or grid requirements. This power regulation capability enhances the versatility of adjustable systems by allowing them to operate efficiently across a wide range of power demands or grid conditions.
- Operational Flexibility: Adjustable systems equipped with pitch drives offer operational flexibility in various settings. The ability to adjust pitch angles allows these systems to adapt to different operating conditions, load profiles, or environmental factors. For example, in wind turbines, pitch drives enable the system to operate optimally in both low and high wind speeds, maximizing energy capture across a wide range of wind conditions. This operational flexibility makes adjustable systems with pitch drives suitable for diverse applications and settings.
- System Protection: Pitch drives contribute to the adaptability and versatility of adjustable systems by providing system protection features. In situations where excessive loads, extreme weather conditions, or potential hazards are detected, pitch drives can adjust the pitch angles to protect the system from damage or unsafe operating conditions. This proactive system protection capability enhances the adaptability and safety of adjustable systems, allowing them to operate reliably and withstand challenging conditions.
In summary, pitch drives significantly contribute to the adaptability and versatility of adjustable systems by optimizing performance, enabling load control and mitigation, providing dynamic response, regulating power, offering operational flexibility, and ensuring system protection. These capabilities make pitch drives essential components in various settings, ranging from renewable energy generation to marine propulsion, where the ability to adjust and optimize system parameters is critical for efficient and reliable operation.

How do pitch drives contribute to precise and controlled pitch adjustments in machinery?
Pitch drives play a crucial role in achieving precise and controlled pitch adjustments in machinery. They provide the necessary actuation and control mechanisms to alter the pitch angle of rotating components, such as blades or propellers, with accuracy and reliability. Here’s a detailed explanation of how pitch drives contribute to precise and controlled pitch adjustments:
Pitch drives utilize various mechanisms, such as hydraulic, pneumatic, electric, or mechanical systems, to generate the required force or torque for pitch angle adjustments. These mechanisms are controlled through integrated control systems or external control signals, allowing for precise and controlled manipulation of the pitch angle. Here are the key ways in which pitch drives contribute to precise and controlled pitch adjustments:
- Accurate Positioning: Pitch drives offer the ability to accurately position the rotating components at the desired pitch angle. They allow for fine adjustments, enabling precise control over the orientation and alignment of the blades or propellers. This accuracy is essential in applications where optimal performance, efficiency, and aerodynamic characteristics are critical.
- Dynamic Control: Pitch drives enable dynamic control over the pitch angle, allowing for real-time adjustments based on changing conditions or operational requirements. With fast response times and precise control algorithms, pitch drives can adapt to varying loads, wind speeds, or other external factors, ensuring that the pitch angle is continuously optimized for optimal performance and safety.
- Load Distribution: In multi-blade systems, such as wind turbines or helicopter rotors, pitch drives contribute to precise and controlled pitch adjustments, resulting in optimized load distribution across the blades. By individually adjusting the pitch angle of each blade, pitch drives can distribute the load evenly, minimize aerodynamic imbalances, and enhance the overall efficiency and lifespan of the machinery.
- Safety and Protection: Pitch drives provide a means for safety and protection in machinery. They enable the adjustment of pitch angles to regulate the rotational speed, prevent over-speeding, and mitigate the effects of excessive loads or adverse operating conditions. By allowing controlled pitch adjustments, pitch drives contribute to safe and reliable operation, protecting the machinery from potential damage or catastrophic failures.
- Automation and Control Integration: Pitch drives can be integrated into automated control systems, allowing for seamless integration and coordination with other components or subsystems of the machinery. Through sensors, feedback loops, and control algorithms, pitch drives can be part of a closed-loop control system that continuously monitors and adjusts the pitch angle based on predefined parameters or operational objectives. This integration enhances the precision, responsiveness, and overall performance of pitch adjustments.
- Flexibility and Adaptability: Different types of pitch drives offer varying degrees of flexibility and adaptability. Electric pitch drives, for example, can offer programmable control algorithms, allowing for customized pitch adjustment profiles or adaptive control strategies. This flexibility enables the pitch drives to adapt to specific operating conditions, load variations, or performance requirements, ensuring precise and controlled pitch adjustments in diverse machinery applications.
Overall, pitch drives provide the necessary actuation and control mechanisms to achieve precise and controlled pitch adjustments in machinery. Through accurate positioning, dynamic control, load distribution, safety features, automation, and adaptability, pitch drives contribute to optimized performance, efficiency, and reliability in various industrial sectors.

How does the design of a pitch drive contribute to efficient adjustment or movement?
The design of a pitch drive plays a crucial role in enabling efficient adjustment or movement of the pitch angle in machinery or systems. The design factors of a pitch drive are carefully considered to ensure precise control, reliability, and optimal performance. Here’s a detailed explanation of how the design of a pitch drive contributes to efficient adjustment or movement:
The design considerations of a pitch drive include the following aspects:
- Mechanical Structure: The mechanical structure of a pitch drive is designed to provide the necessary strength, rigidity, and durability to withstand the operational forces and loads. It ensures that the pitch drive can effectively transmit and control the required torque and movement to adjust the pitch angle. The design considers factors such as material selection, component dimensions, and overall structural integrity to ensure efficient adjustment without compromising the system’s reliability.
- Gearing System: Pitch drives often incorporate gearing systems to transmit and amplify the rotational motion. The design of the gearing system is crucial for efficient adjustment or movement. It ensures precise torque transmission, minimal backlash, and smooth operation. The gear ratio and gear quality are carefully chosen to achieve the desired pitch angle adjustment range and accuracy. The design of the gears also considers factors such as noise reduction, lubrication, and maintenance requirements.
- Actuation Mechanism: The actuation mechanism of a pitch drive depends on the specific application and requirements. It can involve various technologies such as hydraulic, pneumatic, or electric actuators. The design of the actuation mechanism focuses on providing precise and responsive control over the pitch angle adjustment. Factors such as actuator speed, force or torque output, and control system integration are considered to ensure efficient adjustment or movement.
- Control System Integration: The design of a pitch drive includes the integration of a control system that governs the pitch angle adjustment. The control system receives input signals or commands and translates them into appropriate actuation signals for the pitch drive mechanism. The design of the control system ensures accurate and responsive control, taking into account factors such as sensor feedback, signal processing, and control algorithms. Efficient control system design facilitates precise and dynamic adjustment of the pitch angle in real-time.
The design features and considerations of a pitch drive contribute to efficient adjustment or movement in several ways:
- High Precision: The design ensures precise control over the pitch angle, allowing for fine adjustments and accurate positioning. This precision is crucial in applications where small changes in the pitch angle can significantly impact performance, efficiency, or safety.
- Smooth Operation: The design minimizes friction, backlash, and mechanical vibrations, resulting in smooth and consistent movement during pitch angle adjustment. Smooth operation reduces wear and tear, enhances system reliability, and improves overall performance.
- Speed and Responsiveness: The design factors in the actuation mechanism and control system to enable fast and responsive pitch angle adjustments. This is particularly important in applications where rapid changes in the pitch angle are required to adapt to dynamic operating conditions.
- Reliability: The design ensures the pitch drive’s structural integrity, component durability, and system reliability. This contributes to long-term operation without significant maintenance or downtime, enhancing the efficiency and productivity of the machinery or system.
- Safety: The design incorporates safety features and mechanisms to prevent unintended or excessive pitch angle adjustments. Safety considerations may include limit switches, emergency stop controls, or redundant systems to ensure safe operation and protect against potential hazards.
Overall, the design of a pitch drive is carefully engineered to provide efficient adjustment or movement of the pitch angle. By considering mechanical structure, gearing systems, actuation mechanisms, and control system integration, the design aims to achieve precise control, reliability, and optimal performance in machinery or systems that rely on pitch angle adjustment.


editor by CX 2024-03-29