China manufacturer Traverse Winding Machine Gp40A Rolling Ring Drives

Product Description

Product Description

Traverse winding machine GP40A rolling ring drives
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force

Type  GP40A
Shaft Diameter 40 mm
Number of Rolling Rings 3 Pieces
Maximum Thrust(N) 420 N
Weight-Bearing(KG) 42 kg
Maximum Pitch(mm) 32 mm
Weight(KG) 12 kg

 

Product Parameters

Detailed Photos

 

ROTATION DIRECTION (CAN CHANGE)

 

Packaging & Shipping

Package Material

 

Wooden Box or Carton

Package Detail

 

1piece or 5 pieces per carton package or wooden carton

Delivery Way

 

Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement

 

Product Application

Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
 

Different Type of Product

Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.

B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts. 

C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts. 

FAQ

 

Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.

Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q3. What is your terms of delivery?

A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.

Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery

Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Color: Fixed
Customized: Customized
Standard: National
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pitch drive

Are there innovations or advancements in pitch drive technology that have emerged recently?

Yes, there have been significant innovations and advancements in pitch drive technology that have emerged recently. These developments aim to improve the performance, efficiency, reliability, and functionality of pitch drives in various applications. Here’s a detailed explanation of some recent innovations in pitch drive technology:

  • Advanced Materials and Design: Recent advancements in material science and engineering have led to the development of advanced materials and design techniques for pitch drives. These include the use of lightweight and high-strength materials, such as carbon fiber composites, to reduce the weight of the pitch system components without compromising structural integrity. Advanced design methodologies, such as topology optimization and additive manufacturing, enable the creation of complex and optimized geometries, enhancing the performance and efficiency of pitch drives.
  • Smart and Integrated Control Systems: The integration of smart and integrated control systems is a notable advancement in pitch drive technology. These systems combine advanced control algorithms, real-time data analysis, and machine learning techniques to enable more precise and adaptive control of pitch adjustments. Smart control systems can optimize pitch angles based on real-time environmental conditions, system performance, and power demand, resulting in improved energy capture, reduced loads, and enhanced overall efficiency.
  • Condition Monitoring and Predictive Maintenance: Recent innovations in pitch drive technology include the implementation of condition monitoring and predictive maintenance techniques. By integrating sensors, data analytics, and machine learning algorithms, pitch drives can continuously monitor their own health and performance. This allows for the early detection of anomalies, degradation, or impending failures. Predictive maintenance strategies based on the collected data can then be employed to schedule maintenance activities proactively, minimizing downtime and optimizing the lifespan of pitch drives.
  • Fault-Tolerant Designs: Fault-tolerant designs have emerged as a significant advancement in pitch drive technology. These designs incorporate redundancy and robustness features to ensure the continued operation of pitch drives even in the presence of component failures or faults. Redundant sensors, actuators, or control modules can be implemented to maintain functionality and safety. Fault-tolerant designs improve the reliability, availability, and safety of pitch drives in critical applications, such as wind turbines or marine propulsion systems.
  • Wireless Monitoring and Control: The integration of wireless monitoring and control capabilities is another recent innovation in pitch drive technology. Wireless technologies, such as Bluetooth, Wi-Fi, or cellular networks, enable remote monitoring and control of pitch drives. This allows for real-time data acquisition, performance analysis, and system adjustments from a central control station or through mobile devices. Wireless monitoring and control enhance convenience, accessibility, and scalability in managing pitch drives across multiple installations or locations.
  • Energy Storage Integration: Innovations in pitch drive technology also include the integration of energy storage systems. Energy storage devices, such as batteries or supercapacitors, can be combined with pitch drives to store excess energy during low-demand periods and release it during high-demand periods. This integration improves the overall energy management, enhances grid stability, and allows for better utilization of renewable energy sources.

These recent innovations and advancements in pitch drive technology demonstrate the ongoing efforts to enhance the performance, efficiency, reliability, and functionality of adjustable systems. By leveraging advanced materials, smart control systems, condition monitoring, fault-tolerant designs, wireless capabilities, and energy storage integration, pitch drives are becoming more capable, intelligent, and adaptable, enabling their effective deployment in a wide range of applications.

pitch drive

Can pitch drives be customized for specific industries or machinery configurations?

Yes, pitch drives can be customized to meet the specific requirements of different industries or machinery configurations. Customization allows pitch drives to be tailored to the unique needs and constraints of a particular application, ensuring optimal performance, compatibility, and integration. Here’s a detailed explanation of how pitch drives can be customized for specific industries or machinery configurations:

1. Industry-specific Requirements: Different industries may have specific requirements that need to be considered when designing and customizing pitch drives. For example, the wind energy industry requires pitch drives for wind turbines that comply with industry standards and certifications. These standards may dictate factors such as load capacities, environmental durability, safety features, and communication protocols. Customization ensures that the pitch drives meet these industry-specific requirements.

2. Machinery Configuration: Machinery configurations can vary significantly across different applications. Customization allows pitch drives to be designed and adapted to fit specific machinery configurations, including physical dimensions, mounting options, and interface requirements. By customizing the pitch drives to the machinery configuration, optimal integration and performance can be achieved.

3. Power and Torque Requirements: The power and torque requirements of different machinery applications can vary. Customization allows pitch drives to be designed to provide the necessary force or torque output required for precise pitch adjustments. By considering the specific power and torque needs of the machinery, the customized pitch drives can deliver the required performance and control.

4. Control System Integration: Pitch drives can be customized to integrate seamlessly with the existing control systems of the machinery. This customization ensures compatibility and facilitates smooth communication and coordination between the pitch drives and other components or subsystems. By customizing the pitch drives for control system integration, precise and controlled pitch adjustments can be achieved within the overall machinery control architecture.

5. Environmental Considerations: Customization of pitch drives can take into account the specific environmental conditions in which the machinery operates. Factors such as temperature, humidity, dust, and vibration levels can impact the performance and durability of the pitch drives. By customizing the pitch drives to withstand and operate reliably under these environmental conditions, their suitability and longevity in specific industries can be enhanced.

6. Specialized Features: Customization allows for the incorporation of specialized features or functionalities to meet unique industry or application requirements. This could include features such as advanced control algorithms, communication protocols, remote monitoring capabilities, or specific safety mechanisms. By customizing pitch drives with these specialized features, they can be optimized for specific industries or machinery configurations.

It’s important to note that customization may involve collaboration between the pitch drive manufacturer and the machinery designer or end-user. Close communication and understanding of the specific needs and constraints of the industry or machinery configuration are crucial for successful customization.

In summary, pitch drives can be customized to accommodate the requirements of specific industries or machinery configurations. Customization ensures that the pitch drives are tailored to meet industry standards, machinery specifications, power and torque requirements, control system integration, environmental considerations, and any specialized features needed for optimal performance and compatibility.

pitch drive

In what industries or scenarios are pitch drives commonly employed?

Pitch drives are commonly employed in various industries and scenarios where precise control over the pitch angle of rotating components is necessary. The utilization of pitch drives spans across multiple sectors due to the importance of controlling the performance and efficiency of rotating machinery. Here’s a detailed explanation of the industries and scenarios where pitch drives are commonly employed:

Pitch drives find extensive applications in the following industries:

  • Aerospace and Aviation: In the aerospace and aviation industry, pitch drives are widely utilized in aircraft propulsion systems. They play a critical role in controlling the pitch angle of aircraft propellers or turbofan engines. By adjusting the pitch angle, pilots or automated control systems can optimize thrust, fuel efficiency, and overall aircraft performance. Pitch drives ensure efficient power delivery, maneuverability, and safe operation of aircraft.
  • Renewable Energy: Pitch drives are essential components in wind turbines used for generating renewable energy. They allow for precise control of the pitch angle of wind turbine blades. By adjusting the pitch angle, wind turbines can optimize power output based on wind speed and direction. Pitch drives enable wind turbines to capture maximum wind energy, improve efficiency, and ensure safe operation under various wind conditions.
  • Marine and Shipbuilding: In the marine and shipbuilding industry, pitch drives are commonly employed in ship propulsion systems. They control the pitch angle of ship propellers, azimuth thrusters, or waterjet propulsion systems. Pitch drives enable precise control of thrust and maneuverability, allowing ships to navigate efficiently in different operating conditions, such as varying speeds, sea states, and maneuvering requirements.
  • Oil and Gas: Pitch drives are utilized in various applications within the oil and gas industry. They are employed in equipment such as gas compressors, pumps, and offshore drilling rigs. By controlling the pitch angle of rotating components, pitch drives optimize performance, efficiency, and flow characteristics in these systems. They ensure reliable and efficient operation in upstream, midstream, and downstream oil and gas processes.
  • Power Generation: Pitch drives are also employed in power generation systems, particularly in hydroelectric power plants. They control the pitch angle of turbine blades in hydro turbines. By adjusting the pitch angle, the power output can be optimized based on water flow rates and electricity demand. Pitch drives allow for efficient utilization of water resources and enable stable and reliable power generation.
  • Industrial Manufacturing: In the industrial manufacturing sector, pitch drives are used in various applications. They can be found in machinery such as fans, blowers, mixers, and agitators. By controlling the pitch angle of rotating components, pitch drives optimize airflow, fluid dynamics, and mixing efficiency in industrial processes. They ensure consistent and reliable performance in sectors such as chemical, pharmaceutical, food processing, and automotive manufacturing.

Overall, pitch drives are commonly employed in industries and scenarios where precise control over the pitch angle of rotating components is crucial. Their usage spans across aerospace, renewable energy, marine, oil and gas, power generation, and industrial manufacturing sectors, among others. Pitch drives enable optimization of performance, efficiency, and control in various applications, contributing to the smooth and reliable operation of machinery and systems.

China manufacturer Traverse Winding Machine Gp40A Rolling Ring Drives  China manufacturer Traverse Winding Machine Gp40A Rolling Ring Drives
editor by Dream 2024-04-24