Product Description
Product Description
GP3-60C wire automatic rolling ring drive for twisting machine
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force
| Type | GP60C |
| Shaft Diameter | 60 mm |
| Number of Rolling Rings | 3 Pieces |
| Maximum Thrust(N) | 1000 N |
| Weight-Bearing(KG) | 100 kg |
| Maximum Pitch(mm) | 48 mm |
| Weight(KG) | 78 kg |
| Linear Xihu (West Lake) Dis. Length | Standard length 1000mm or Customized length |
Product Parameters
Detailed Photos
ROTATION DIRECTION (CAN CHANGE)
Packaging & Shipping
|
Package Material
|
Wooden Box or Carton |
|
Package Detail
|
1piece or 5 pieces per carton package or wooden carton |
|
Delivery Way
|
Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement |
Product Application
Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
Different Type of Product
Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.
B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts.
C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts.
FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.
Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.
Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

How do pitch drives contribute to the adaptability and versatility of adjustable systems in various settings?
Pitch drives play a crucial role in enhancing the adaptability and versatility of adjustable systems across various settings. These drives enable precise control over the pitch angles of adjustable components, allowing them to respond dynamically to changing operating conditions. Here’s a detailed explanation of how pitch drives contribute to the adaptability and versatility of adjustable systems:
- Optimized Performance: By adjusting the pitch angles of blades, propellers, or other adjustable components, pitch drives optimize the performance of adjustable systems. In applications such as wind turbines or marine propulsion systems, pitch drives enable the system to capture maximum energy from the wind or water currents. By adjusting the pitch angles based on real-time conditions, such as wind speed or load demand, pitch drives ensure that the system operates at its peak performance, maximizing energy conversion, and overall efficiency.
- Load Control and Mitigation: Pitch drives provide load control capabilities, allowing adjustable systems to manage and mitigate excessive loads. By adjusting the pitch angles, the systems can redistribute the loads on components, reducing stress concentrations and minimizing the risk of fatigue or failure. This load control capability is particularly valuable in applications where adjustable systems operate under varying and unpredictable load conditions, such as wind turbines experiencing gusty winds or marine systems encountering wave-induced loads.
- Dynamic Response: The ability of pitch drives to adjust pitch angles in real-time enables adjustable systems to have a dynamic response to changing operating conditions. For example, in wind turbines, pitch drives can respond to sudden changes in wind speed or direction, allowing the blades to maintain optimal aerodynamic performance and prevent excessive loads. This dynamic response capability enhances the adaptability of adjustable systems, enabling them to quickly adjust and optimize their operation in response to environmental changes.
- Power Regulation: Pitch drives contribute to the adaptability of adjustable systems by enabling power regulation. By adjusting the pitch angles, the systems can control the power output or torque generation. This is particularly useful in applications such as wind turbines, where pitch drives can regulate the rotational speed of the blades to match the desired power output or grid requirements. This power regulation capability enhances the versatility of adjustable systems by allowing them to operate efficiently across a wide range of power demands or grid conditions.
- Operational Flexibility: Adjustable systems equipped with pitch drives offer operational flexibility in various settings. The ability to adjust pitch angles allows these systems to adapt to different operating conditions, load profiles, or environmental factors. For example, in wind turbines, pitch drives enable the system to operate optimally in both low and high wind speeds, maximizing energy capture across a wide range of wind conditions. This operational flexibility makes adjustable systems with pitch drives suitable for diverse applications and settings.
- System Protection: Pitch drives contribute to the adaptability and versatility of adjustable systems by providing system protection features. In situations where excessive loads, extreme weather conditions, or potential hazards are detected, pitch drives can adjust the pitch angles to protect the system from damage or unsafe operating conditions. This proactive system protection capability enhances the adaptability and safety of adjustable systems, allowing them to operate reliably and withstand challenging conditions.
In summary, pitch drives significantly contribute to the adaptability and versatility of adjustable systems by optimizing performance, enabling load control and mitigation, providing dynamic response, regulating power, offering operational flexibility, and ensuring system protection. These capabilities make pitch drives essential components in various settings, ranging from renewable energy generation to marine propulsion, where the ability to adjust and optimize system parameters is critical for efficient and reliable operation.

How does the choice of materials impact the performance of pitch drives in different environments?
The choice of materials plays a significant role in determining the performance of pitch drives, particularly in different environments. The materials used in pitch drives directly impact factors such as durability, reliability, efficiency, and resistance to environmental conditions. Here’s a detailed explanation of how the choice of materials impacts the performance of pitch drives in different environments:
- Durability and Mechanical Strength: The materials used in pitch drives must possess high durability and mechanical strength to withstand the forces and loads experienced during operation. The choice of materials with excellent tensile strength, fatigue resistance, and resistance to wear can help ensure the longevity and reliability of the pitch drives, especially in demanding environments where high loads, vibrations, or abrasive particles may be present.
- Corrosion Resistance: In environments where pitch drives are exposed to moisture, saltwater, or corrosive substances, the choice of materials with high corrosion resistance is crucial. Corrosion can degrade the performance and structural integrity of pitch drives over time. Materials such as stainless steel, corrosion-resistant alloys, or specialized coatings can be employed to mitigate the effects of corrosion and maintain the performance and reliability of the pitch drives in such environments.
- Temperature Resistance: Different environments can subject pitch drives to extreme temperature variations. The materials used in pitch drives should have appropriate temperature resistance properties to ensure consistent performance across a wide temperature range. For example, in high-temperature environments, materials with high heat resistance, such as heat-resistant alloys or ceramics, may be employed to prevent deformation or degradation of the pitch drives.
- Environmental Contaminants: Some environments may contain contaminants, such as dust, dirt, or chemicals, which can impact the performance of pitch drives. The choice of materials that are resistant to the specific environmental contaminants encountered in a particular application can help maintain the functionality and reliability of the pitch drives. Materials with low friction coefficients or self-cleaning properties may be preferred to minimize the accumulation of contaminants on critical components.
- Weight and Inertia: The choice of materials in pitch drives can also impact their weight and inertia. Lighter materials with high strength-to-weight ratios can reduce the overall weight of the pitch drives, resulting in improved energy efficiency and reduced mechanical stress. Additionally, materials with low inertia can enhance the responsiveness and agility of the pitch drives, allowing for faster pitch adjustments and precise control in dynamic operating conditions.
- Electrical and Thermal Conductivity: In pitch drives that incorporate electrical or thermal components, such as sensors, actuators, or cooling systems, the choice of materials can impact electrical and thermal conductivity. Materials with appropriate electrical and thermal conductivity properties can facilitate efficient heat dissipation, electrical signal transmission, or electromagnetic interference (EMI) shielding, ensuring optimal performance and minimizing the risk of electrical or thermal issues.
It’s important to note that the choice of materials should be based on a thorough understanding of the specific environmental conditions and operational requirements of the pitch drives. Factors such as cost-effectiveness, manufacturability, and compatibility with other components or subsystems should also be considered.
In summary, the choice of materials in pitch drives significantly impacts their performance in different environments. Materials with high durability, corrosion resistance, temperature resistance, resistance to environmental contaminants, appropriate weight and inertia, and suitable electrical and thermal conductivity properties can ensure optimal performance, reliability, and longevity of pitch drives in various operating conditions.

Can you describe the factors to consider when selecting pitch drives for specific applications?
When selecting pitch drives for specific applications, several factors need to be considered to ensure optimal performance, reliability, and efficiency. The suitability of a pitch drive depends on the requirements of the application, the operating conditions, and the desired performance objectives. Here’s a detailed explanation of the factors to consider when selecting pitch drives for specific applications:
- Power Requirements: The power requirements of the application play a crucial role in pitch drive selection. It is essential to determine the required force or torque output to adjust the pitch angle effectively. Considerations should include the load characteristics, operating speed, and the ability of the pitch drive to handle the power demands of the system.
- Control and Precision: The level of control and precision needed for pitch angle adjustments is another critical factor. Some applications require high accuracy and responsiveness, while others may tolerate lower precision. Consider the required control resolution, response time, and the ability of the pitch drive to maintain the desired pitch angle within specified tolerances.
- Environmental Conditions: Environmental conditions, such as temperature, humidity, dust, and vibration levels, can significantly impact the performance and durability of pitch drives. Evaluate the operating environment and ensure that the pitch drive is designed to withstand and operate reliably under the specific environmental conditions of the application.
- Load Capacity and Dynamics: Consider the load capacity and dynamics of the application. Evaluate the maximum loads that the pitch drive needs to handle and ensure that it can provide the necessary force or torque output. Additionally, consider the dynamic behavior of the application, including acceleration, deceleration, and cyclic load variations, and select a pitch drive that can withstand the expected load dynamics.
- Space and Weight Constraints: Space limitations and weight constraints may influence the selection of a pitch drive, especially in applications with confined spaces or weight-sensitive systems. Consider the physical dimensions, weight, and compactness of the pitch drive to ensure it can be appropriately integrated into the system without compromising other design requirements.
- Reliability and Maintenance: Reliability is crucial in many applications, particularly in critical systems where downtime can have severe consequences. Evaluate the reliability track record of the pitch drive and consider factors such as maintenance requirements, expected lifespan, and availability of spare parts. Additionally, consider the ease of maintenance and the availability of technical support or service from the manufacturer or supplier.
- Cost and Budget: Cost considerations are essential when selecting a pitch drive. Evaluate the initial purchase cost, installation costs, and any additional costs associated with integrating the pitch drive into the system. Also, consider the long-term operating costs, including maintenance, energy consumption, and potential future upgrades or replacements.
- Compatibility and Integration: Ensure compatibility and smooth integration of the pitch drive with the existing system or components. Consider factors such as mounting options, interface requirements, control system compatibility, and the feasibility of integrating the pitch drive seamlessly into the application.
- Industry and Application-specific Requirements: Different industries and applications may have specific requirements or standards that need to be met. For example, wind turbine pitch drives may need to comply with industry standards and certifications. Evaluate any industry-specific requirements and ensure that the selected pitch drive meets the necessary criteria.
By carefully considering these factors, it is possible to select a pitch drive that is well-suited for the specific application, delivering optimal performance, reliability, and efficiency.
<img src="https://img.hzpt.com/img/gearbox/gearbox-l1.webp" alt="China factory Gp3-60c Wire Automatic Rolling Ring Drive for Twisting Machine “><img src="https://img.hzpt.com/img/gearbox/gearbox-l2.webp" alt="China factory Gp3-60c Wire Automatic Rolling Ring Drive for Twisting Machine “>
editor by Dream 2024-10-16