China supplier Gp3-50c Wire Automatic Rolling Ring Drive for Twisting Machine

Product Description

Product Description

GP3-50C wire automatic rolling ring drive for twisting machine
Manufacturer of automatic linear transmission gear with well-equipped testing facilities and strong technical force

Type  GP50C
Shaft Diameter 50 mm
Number of Rolling Rings 3 Pieces
Maximum Thrust(N) 700 N
Weight-Bearing(KG) 70 kg
Maximum Pitch(mm) 40 mm
Weight(KG) 66 kg
Linear Xihu (West Lake) Dis. Length Standard length 1000mm or Customized length

 

Product Parameters

Detailed Photos

 

ROTATION DIRECTION (CAN CHANGE)

 

Packaging & Shipping

Package Material

 

Wooden Box or Carton

Package Detail

 

1piece or 5 pieces per carton package or wooden carton

Delivery Way

 

Deliver the goods by express, like UPS, DHL, FedEx or by sea shipment or according to customer’s requirement

 

Product Application

Rolling ring drive/ traverse unit device is mostly used in industry. Used in textile machine, wire spooling machine, traverse winding machine, wire winding machine, linear drive system, medical equipment, etc.
 

Different Type of Product

Rolling Ring Drive has GPA, GPB, CHINAMFG Series, It is widely used in wire,steel wire,electrical wire, cable, textile industry etc.
A Series : Rolling ring drives Type A Series just have 1 rolling ring linear drive box , which are divided into six types according to the diameter of the shafts.

B Series: Rolling ring drives Type B Series have One Rolling Ring linear drive with Xihu (West Lake) Dis. Rollers or Xihu (West Lake) Dis. Wheel , which are divided into 6 types according to the diameter of the shafts. 

C Series : Rolling ring drives Type C Series have One Rolling Ring linear drive with accessories, such as shaft,guide roller,bearing block,steady bar,etc , which are divided into six types according to the diameter of the shafts. 

FAQ

 

Q1. What is your terms of packing?
A: Generally, we pack our goods in carton boxes or wooden boxes.

Q2. What is your terms of payment?
A: T/T 100% paymeny in advance, or 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q3. What is your terms of delivery?

A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will send this product within 3 or 5 days after receiving your payment. The specific delivery time depends on the items and the quantity of your order.

Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery

Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

pitch drive

What safety considerations should be taken into account when using pitch drives in industrial settings?

When using pitch drives in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, the protection of equipment, and the prevention of accidents. Here’s a detailed explanation of the safety considerations associated with the use of pitch drives in industrial settings:

  • Training and Competence: Proper training and competence of personnel operating and maintaining pitch drives are essential for safety. Adequate training should be provided to ensure that operators and maintenance personnel understand the operating principles, safety procedures, and potential hazards associated with pitch drives. Competent personnel can effectively identify and respond to safety risks, perform maintenance tasks safely, and mitigate potential accidents or malfunctions.
  • Protective Measures: Industrial settings utilizing pitch drives should incorporate appropriate protective measures to minimize the risk of accidents and injuries. This includes the installation of physical barriers, guards, or enclosures around pitch drive components to prevent unauthorized access and protect personnel from moving parts. Safety interlocks and emergency stop systems should also be in place to quickly halt pitch drive operation in case of emergencies or abnormal conditions.
  • Electrical Safety: Pitch drives in industrial settings typically involve electrical components and connections. Electrical safety measures should be observed, including proper grounding, insulation, and protection against electrical hazards. Qualified electricians should handle electrical installations, and regular inspections should be conducted to ensure the integrity of electrical systems associated with pitch drives.
  • Lockout/Tagout Procedures: Lockout/tagout procedures are crucial when performing maintenance, repair, or inspection tasks on pitch drives. These procedures ensure that energy sources are isolated, locked, and tagged to prevent accidental startup or release of stored energy. Lockout/tagout procedures should be strictly followed to protect personnel from electrical shocks, unexpected movements, or hazardous conditions during maintenance activities.
  • Risk Assessment and Hazard Identification: A comprehensive risk assessment should be conducted to identify potential hazards and assess the associated risks in industrial settings using pitch drives. This includes evaluating risks related to electrical hazards, mechanical hazards, ergonomic factors, and environmental factors. By identifying and understanding the specific risks, appropriate control measures can be implemented to minimize or eliminate hazards and reduce the likelihood of accidents or injuries.
  • Maintenance and Inspections: Regular maintenance and inspections are critical for ensuring the safe operation of pitch drives in industrial settings. Scheduled maintenance tasks, such as lubrication, alignment checks, and component replacements, should be performed according to manufacturer recommendations and industry standards. Inspections should be conducted to identify any signs of wear, damage, or deterioration that may compromise the safety and reliability of pitch drives.
  • Emergency Preparedness: Adequate emergency preparedness measures should be in place to respond to potential accidents or malfunctions involving pitch drives. This includes having well-defined emergency procedures, trained personnel, and appropriate safety equipment readily available. Emergency response drills and exercises can help familiarize personnel with the necessary actions to take during emergency situations and ensure a prompt and effective response.
  • Compliance with Standards and Regulations: Industrial settings should comply with relevant safety standards, regulations, and codes when using pitch drives. These standards may include electrical safety standards, machinery safety standards, and occupational health and safety regulations. Compliance ensures that safety requirements are met, and best practices are followed to protect personnel and maintain a safe working environment.

In summary, safety considerations are of utmost importance when using pitch drives in industrial settings. Training and competence, protective measures, electrical safety, lockout/tagout procedures, risk assessment, maintenance and inspections, emergency preparedness, and compliance with standards and regulations are key aspects to address. By implementing these safety considerations, industrial settings can mitigate risks, prevent accidents, and create a safer environment for personnel and equipment when using pitch drives.

pitch drive

What maintenance practices are recommended for pitch drives to ensure optimal functionality?

Maintenance practices play a crucial role in ensuring the optimal functionality and longevity of pitch drives. Regular maintenance helps identify and address potential issues, minimize downtime, and maximize the performance and reliability of pitch drives. Here are some recommended maintenance practices for pitch drives:

  • Inspection and Cleaning: Regular visual inspections should be conducted to identify any signs of wear, damage, or contamination. The pitch drives should be cleaned to remove dirt, debris, or environmental contaminants that can affect their performance. This includes cleaning the external surfaces as well as inspecting internal components, such as bearings, seals, and electrical connections.
  • Lubrication: Proper lubrication is essential for the smooth operation of pitch drives. The lubrication schedule recommended by the manufacturer should be followed, and appropriate lubricants should be used. This helps reduce friction, minimize wear, and prolong the life of moving parts, such as gears, bearings, and sliding surfaces.
  • Torque and Tension Checks: Regular checks should be performed to ensure that the fasteners, bolts, and connections in the pitch drive system are properly torqued and tightened. Any loose or damaged fasteners should be addressed promptly to prevent potential issues, such as misalignment or component failure.
  • Electrical System Maintenance: If the pitch drive incorporates electrical components, regular inspections and testing of the electrical system should be conducted. This includes checking the wiring integrity, insulation, and connections, as well as verifying the performance of sensors, actuators, and control systems. Any abnormalities or malfunctions should be addressed promptly to maintain the electrical functionality of the pitch drives.
  • Alignment and Calibration: Periodic alignment and calibration of the pitch drives are important to ensure accurate and precise pitch adjustments. Misalignment can lead to improper load distribution, increased wear, or reduced performance. The alignment and calibration procedures recommended by the manufacturer should be followed to maintain the optimal functionality of the pitch drives.
  • Condition Monitoring: Implementing condition monitoring techniques, such as vibration analysis, thermal imaging, or oil analysis, can help detect early signs of potential issues in pitch drives. By monitoring key parameters and analyzing trends, maintenance personnel can identify abnormal behavior or degradation in components, allowing for proactive maintenance actions to be taken before major failures occur.
  • Record Keeping and Documentation: Maintaining detailed records of maintenance activities, inspections, repairs, and component replacements is essential. This documentation helps track the maintenance history, identify recurring issues, and ensure that maintenance tasks are performed at appropriate intervals. It also aids in warranty claims, troubleshooting, and future maintenance planning.

It’s important to note that maintenance practices may vary depending on the specific type of pitch drive, manufacturer’s recommendations, and operating conditions. Following the manufacturer’s guidelines, consulting maintenance manuals, and seeking professional assistance when needed are essential for implementing the most appropriate maintenance practices for the specific pitch drive system.

By implementing regular maintenance practices, pitch drives can operate optimally, minimize the risk of unexpected failures, and contribute to the overall efficiency, performance, and reliability of the machinery or systems they are a part of.

pitch drive

What is a pitch drive, and how is it used in the context of machinery or systems?

A pitch drive refers to a mechanical or electromechanical component used in machinery or systems to control the pitch angle of a rotating object or component. It is commonly employed in applications where precise control over the angle of rotation is required. The pitch drive mechanism is designed to adjust and maintain the desired pitch angle of the rotating object, enabling smooth and controlled motion. Here’s a detailed explanation of the concept and usage of a pitch drive in the context of machinery or systems:

In various mechanical systems, especially those involving rotating components such as propellers, turbines, or rotor blades, the pitch angle plays a crucial role in determining the performance, efficiency, and functionality. The pitch angle refers to the angle between the rotating object’s longitudinal axis and its plane of rotation. By adjusting the pitch angle, the aerodynamic or hydrodynamic characteristics of the rotating component can be modified, resulting in changes to thrust, lift, or other performance parameters.

A pitch drive mechanism consists of various components, including motors, gears, linkages, and control systems. The specific design and configuration depend on the application requirements and the complexity of the system. The primary function of the pitch drive is to provide controlled rotation and adjustment of the pitch angle, allowing precise control over the output or performance of the rotating component.

The pitch drive is typically controlled by a control system that receives input signals or commands to adjust the pitch angle. The control signals can come from various sources, such as manual control inputs, automated control algorithms, or feedback from sensors or monitoring systems. The control system processes the input signals and actuates the pitch drive mechanism accordingly to achieve the desired pitch angle.

In the context of specific applications, here are some examples of how pitch drives are used:

  • Aircraft Propellers: Pitch drives are commonly used in aircraft propellers to control the pitch angle of the propeller blades. By adjusting the pitch angle, the propeller’s performance characteristics can be optimized for various flight conditions, such as takeoff, climb, cruise, or descent. The pitch drive allows the pilot or automated control system to change the pitch angle to achieve the desired thrust and efficiency.
  • Wind Turbines: Pitch drives are employed in wind turbines to control the pitch angle of the turbine blades. Wind conditions can vary, and by adjusting the pitch angle, the turbine can optimize its operation for maximum power generation or to protect the system during high wind or storm conditions. The pitch drive mechanism enables the wind turbine to adjust the pitch angle of each blade individually or collectively to maintain optimal performance.
  • Marine Propulsion Systems: Pitch drives are utilized in marine propulsion systems, such as ship propellers or watercraft thrusters. By adjusting the pitch angle of the propeller blades, the propulsion system can optimize thrust, maneuverability, and efficiency. Pitch drives allow for dynamic control of the pitch angle, enabling vessels to adapt to changing operating conditions or specific maneuvering requirements.
  • Industrial Machinery: In various industrial machinery applications, pitch drives can be employed to control the pitch angle of rotating components like fan blades, impellers, or mixing blades. By adjusting the pitch angle, the performance, efficiency, or flow characteristics of the machinery can be controlled or optimized, leading to improved process outcomes.

Overall, pitch drives play a vital role in machinery or systems where precise control over the pitch angle of rotating components is required. By enabling adjustments to the pitch angle, these drives allow for optimization of performance, efficiency, and functionality in a wide range of applications, including aircraft, wind turbines, marine propulsion systems, and industrial machinery.

<img src="https://img.hzpt.com/img/gearbox/gearbox-l1.webp" alt="China supplier Gp3-50c Wire Automatic Rolling Ring Drive for Twisting Machine “><img src="https://img.hzpt.com/img/gearbox/gearbox-l2.webp" alt="China supplier Gp3-50c Wire Automatic Rolling Ring Drive for Twisting Machine “>
editor by Dream 2024-10-25